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Problems
Algebra
A1. Professor Oak is feeding his 100 Pokémon. Each Pokémon has a bowl whose capacity

is a positive real number of kilograms. These capacities are known to Professor Oak. The total
capacity of all the bowls is 100 kilograms. Professor Oak distributes 100 kilograms of food in
such a way that each Pokémon receives a non-negative integer number of kilograms of food
(which may be larger than the capacity of their bowl). The dissatisfaction level of a Pokémon
who received N kilograms of food and whose bowl has a capacity of C kilograms is equal to
|N ´ C|.

Find the smallest real number D such that, regardless of the capacities of the bowls, Pro-
fessor Oak can distribute the food in a way that the sum of the dissatisfaction levels over all
the 100 Pokémon is at most D.

(Ukraine)
A2. Let R be the set of real numbers. Let f : RÑ R be a function such that

fpx` yqfpx´ yq ě fpxq2 ´ fpyq2

for every x, y P R. Assume that the inequality is strict for some x0, y0 P R.
Prove that fpxq ě 0 for every x P R or fpxq ď 0 for every x P R.

(Malaysia)
A3. Let x1, x2, . . . , x2023 be distinct real positive numbers such that

an “

d

px1 ` x2 ` ¨ ¨ ¨ ` xnq

ˆ

1

x1

`
1

x2

` ¨ ¨ ¨ `
1

xn

˙

is an integer for every n “ 1, 2, . . . , 2023. Prove that a2023 ě 3034.
(Netherlands)

A4. Let Rą0 be the set of positive real numbers. Determine all functions f : Rą0 Ñ Rą0

such that
x
`

fpxq ` fpyq
˘

ě
`

fpfpxqq ` y
˘

fpyq

for every x, y P Rą0.
(Belgium)

A5. Let a1, a2, . . . , a2023 be positive integers such that

• a1, a2, . . . , a2023 is a permutation of 1, 2, . . . , 2023, and

• |a1 ´ a2|, |a2 ´ a3|, . . . , |a2022 ´ a2023| is a permutation of 1, 2, . . . , 2022.

Prove that max
`

a1, a2023

˘

ě 507.
(Australia)
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A6. Let k ě 2 be an integer. Determine all sequences of positive integers a1, a2, . . . for
which there exists a monic polynomial P of degree k with non-negative integer coefficients such
that

P panq “ an`1an`2 ¨ ¨ ¨ an`k

for every integer n ě 1.
(Malaysia)

A7. Let N be a positive integer. Prove that there exist three permutations a1, a2, . . . , aN ;
b1, b2, . . . , bN ; and c1, c2, . . . , cN of 1, 2, . . . , N such that∣∣∣?ak `a

bk `
?
ck ´ 2

?
N
∣∣∣ ă 2023

for every k “ 1, 2, . . . , N .
(China)
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Combinatorics
C1. Let m and n be positive integers greater than 1. In each unit square of an mˆn grid

lies a coin with its tail-side up. A move consists of the following steps:

1. select a 2ˆ 2 square in the grid;

2. flip the coins in the top-left and bottom-right unit squares;

3. flip the coin in either the top-right or bottom-left unit square.

Determine all pairs pm,nq for which it is possible that every coin shows head-side up after a
finite number of moves.

(Thailand)
C2. Determine the maximal length L of a sequence a1, . . . , aL of positive integers satisfying

both the following properties:

• every term in the sequence is less than or equal to 22023, and

• there does not exist a consecutive subsequence ai, ai`1, . . . , aj (where 1 ď i ď j ď L) with
a choice of signs si, si`1, . . . , sj P t1,´1u for which

siai ` si`1ai`1 ` ¨ ¨ ¨ ` sjaj “ 0.

(Czech Republic)
C3. Let n be a positive integer. We arrange 1 ` 2 ` ¨ ¨ ¨ ` n circles in a triangle with n

rows, such that the ith row contains exactly i circles. The following figure shows the case n “ 6.

n “ 6

In this triangle, a ninja-path is a sequence of circles obtained by repeatedly going from a
circle to one of the two circles directly below it. In terms of n, find the largest value of k such
that if one circle from every row is coloured red, we can always find a ninja-path in which at
least k of the circles are red.

(Netherlands)
C4. Let n ě 2 be a positive integer. Paul has a 1 ˆ n2 rectangular strip consisting of n2

unit squares, where the ith square is labelled with i for all 1 ď i ď n2. He wishes to cut the
strip into several pieces, where each piece consists of a number of consecutive unit squares, and
then translate (without rotating or flipping) the pieces to obtain an nˆn square satisfying the
following property: if the unit square in the ith row and jth column is labelled with aij, then
aij ´ pi` j ´ 1q is divisible by n.

Determine the smallest number of pieces Paul needs to make in order to accomplish this.
(U.S.A.)
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C5. Elisa has 2023 treasure chests, all of which are unlocked and empty at first. Each day,
Elisa adds a new gem to one of the unlocked chests of her choice, and afterwards, a fairy acts
according to the following rules:

• if more than one chests are unlocked, it locks one of them, or

• if there is only one unlocked chest, it unlocks all the chests.

Given that this process goes on forever, prove that there is a constant C with the following
property: Elisa can ensure that the difference between the numbers of gems in any two chests
never exceeds C, regardless of how the fairy chooses the chests to lock.

(Israel)
C6. Let N be a positive integer, and consider an N ˆ N grid. A right-down path is a

sequence of grid cells such that each cell is either one cell to the right of or one cell below the
previous cell in the sequence. A right-up path is a sequence of grid cells such that each cell is
either one cell to the right of or one cell above the previous cell in the sequence.

Prove that the cells of the N ˆ N grid cannot be partitioned into less than N right-down
or right-up paths. For example, the following partition of the 5ˆ 5 grid uses 5 paths.

(Canada)
C7. The Imomi archipelago consists of n ě 2 islands. Between each pair of distinct islands

is a unique ferry line that runs in both directions, and each ferry line is operated by one of
k companies. It is known that if any one of the k companies closes all its ferry lines, then
it becomes impossible for a traveller, no matter where the traveller starts at, to visit all the
islands exactly once (in particular, not returning to the island the traveller started at).

Determine the maximal possible value of k in terms of n.
(Ukraine)
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Geometry
G1. Let ABCDE be a convex pentagon such that =ABC “ =AED “ 90˝. Suppose

that the midpoint of CD is the circumcentre of triangle ABE. Let O be the circumcentre of
triangle ACD.

Prove that line AO passes through the midpoint of segment BE.
(Slovakia)

G2. Let ABC be a triangle with AC ą BC. Let ω be the circumcircle of triangle ABC
and let r be the radius of ω. Point P lies on segment AC such that BC “ CP and point S is
the foot of the perpendicular from P to line AB. Let ray BP intersect ω again at D and let Q
lie on line SP such that PQ “ r and S, P,Q lie on the line in that order. Finally, let the line
perpendicular to CQ from A intersect the line perpendicular to DQ from B at E.

Prove that E lies on ω.
(Iran)

G3. Let ABCD be a cyclic quadrilateral with =BAD ă =ADC. Let M be the midpoint
of the arc CD not containing A. Suppose there is a point P inside ABCD such that =ADB “
=CPD and =ADP “ =PCB.

Prove that lines AD,PM,BC are concurrent.
(Slovakia)

G4. Let ABC be an acute-angled triangle with AB ă AC. Denote its circumcircle by Ω
and denote the midpoint of arc CAB by S. Let the perpendicular from A to BC meet BS
and Ω at D and E ‰ A respectively. Let the line through D parallel to BC meet line BE at L
and denote the circumcircle of triangle BDL by ω. Let ω meet Ω again at P ‰ B.

Prove that the line tangent to ω at P , and line BS intersect on the internal bisector
of =BAC.

(Portugal)
G5. Let ABC be an acute-angled triangle with circumcircle ω and circumcentre O. Points
D ‰ B and E ‰ C lie on ω such that BD K AC and CE K AB. Let CO meet AB at X, and
BO meet AC at Y .

Prove that the circumcircles of triangles BXD and CY E have an intersection on line AO.
(Malaysia)

G6. Let ABC be an acute-angled triangle with circumcircle ω. A circle Γ is internally
tangent to ω at A and also tangent to BC at D. Let AB and AC intersect Γ at P and Q
respectively. Let M and N be points on line BC such that B is the midpoint of DM and
C is the midpoint of DN . Lines MP and NQ meet at K and intersect Γ again at I and J
respectively. The ray KA meets the circumcircle of triangle IJK at X ‰ K.

Prove that =BXP “ =CXQ.
(United Kingdom)
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G7. Let ABC be an acute, scalene triangle with orthocentre H. Let `a be the line through
the reflection of B with respect to CH and the reflection of C with respect to BH. Lines `b
and `c are defined similarly. Suppose lines `a, `b, and `c determine a triangle T .

Prove that the orthocentre of T , the circumcentre of T and H are collinear.
(Ukraine)

G8. Let ABC be an equilateral triangle. Points A1, B1, C1 lie inside triangle ABC such
that triangle A1B1C1 is scalene, BA1 “ A1C, CB1 “ B1A, AC1 “ C1B and

=BA1C `=CB1A`=AC1B “ 480˝.

Lines BC1 and CB1 intersect at A2; lines CA1 and AC1 intersect at B2; and lines AB1 and
BA1 intersect at C2.

Prove that the circumcircles of triangles AA1A2, BB1B2, CC1C2 have two common points.
(U.S.A.)
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Number Theory
N1. Determine all positive, composite integers n that satisfy the following property: if

the positive divisors of n are 1 “ d1 ă d2 ă ¨ ¨ ¨ ă dk “ n, then di divides di`1 ` di`2 for every
1 ď i ď k ´ 2.

(Colombia)
N2. Determine all pairs pa, pq of positive integers with p prime such that pa`a4 is a perfect

square.
(Bangladesh)

N3. For positive integers n and k ě 2 define Ekpnq as the greatest exponent r such that
kr divides n!. Prove that there are infinitely many n such that E10pnq ą E9pnq and infinitely
many m such that E10pmq ă E9pmq.

(Brazil)
N4. Let a1, a2, . . . , an, b1, b2, . . . , bn be 2n positive integers such that the n` 1 products

a1a2a3 ¨ ¨ ¨ an,
b1a2a3 ¨ ¨ ¨ an,
b1b2a3 ¨ ¨ ¨ an,

...
b1b2b3 ¨ ¨ ¨ bn

form a strictly increasing arithmetic progression in that order. Determine the smallest positive
integer that could be the common difference of such an arithmetic progression.

(Canada)
N5. Let a1 ă a2 ă a3 ă ¨ ¨ ¨ be positive integers such that ak`1 divides 2pa1 ` a2 ` ¨ ¨ ¨ ` akq

for every k ě 1. Suppose that for infinitely many primes p, there exists k such that p divides
ak. Prove that for every positive integer n, there exists k such that n divides ak.

(Netherlands)
N6. A sequence of integers a0, a1, a2, . . . is called kawaii, if a0 “ 0, a1 “ 1, and, for any

positive integer n, we have

pan`1 ´ 3an ` 2an´1qpan`1 ´ 4an ` 3an´1q “ 0.

An integer is called kawaii if it belongs to a kawaii sequence.
Suppose that two consecutive positive integers m and m`1 are both kawaii (not necessarily

belonging to the same kawaii sequence). Prove that 3 divides m, and that m{3 is kawaii.
(China)

N7. Let a, b, c, d be positive integers satisfying

ab

a` b
`

cd

c` d
“
pa` bqpc` dq

a` b` c` d
.

Determine all possible values of a` b` c` d.
(Netherlands)

N8. Let Zą0 be the set of positive integers. Determine all functions f : Zą0 Ñ Zą0 such
that

f bfpaqpa` 1q “ pa` 1qfpbq

holds for all a, b P Zą0, where fkpnq “ fpfp¨ ¨ ¨ fpnq ¨ ¨ ¨ qq denotes the composition of f with
itself k times.

(Taiwan)
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Solutions

Algebra

A1. Professor Oak is feeding his 100 Pokémon. Each Pokémon has a bowl whose capacity
is a positive real number of kilograms. These capacities are known to Professor Oak. The total
capacity of all the bowls is 100 kilograms. Professor Oak distributes 100 kilograms of food in
such a way that each Pokémon receives a non-negative integer number of kilograms of food
(which may be larger than the capacity of their bowl). The dissatisfaction level of a Pokémon
who received N kilograms of food and whose bowl has a capacity of C kilograms is equal to
|N ´ C|.

Find the smallest real number D such that, regardless of the capacities of the bowls, Pro-
fessor Oak can distribute the food in a way that the sum of the dissatisfaction levels over all
the 100 Pokémon is at most D.

(Ukraine)

Answer: The answer is D “ 50.

Solution 1. First, consider the situation where 99 bowls have a capacity of 0.5 kilograms and
the last bowl has a capacity of 50.5 kilograms. No matter how Professor Oak distributes the
food, the dissatisfaction level of every Pokémon will be at least 0.5. This amounts to a total
dissatisfaction level of at least 50, proving that D ě 50.

Now we prove that no matter what the capacities of the bowls are, Professor Oak can always
distribute food in a way that the total dissatisfaction level is at most 50. We start by fixing
some notation. We number the Pokémon from 1 to 100. Let Ci ą 0 be the capacity of the
bowl of the ith Pokémon. By assumption, we have C1 ` C2 ` ¨ ¨ ¨ ` C100 “ 100. We write
Fi :“ Ci ´ tCiu for the fractional part of Ci. Without loss of generality, we may assume that
F1 ď F2 ď ¨ ¨ ¨ ď F100.

Here is a strategy: Professor Oak starts by giving tCiu kilograms of food to the ith Pokémon.
Let

R :“ 100´ tC1u´ tC2u´ ¨ ¨ ¨ ´ tC100u “ F1 ` F2 ` ¨ ¨ ¨ ` F100 ě 0

be the amount of food left. He continues by giving an extra kilogram of food to the R Pokémon
numbered 100´R` 1, 100´R` 2, . . . , 100, i.e. the Pokémon with the R largest values of Fi.
By doing so, Professor Oak distributed 100 kilograms of food. The total dissatisfaction level
with this strategy is

d :“ F1 ` ¨ ¨ ¨ ` F100´R ` p1´ F100´R`1q ` ¨ ¨ ¨ ` p1´ F100q.

We can rewrite

d “ 2pF1 ` ¨ ¨ ¨ ` F100´Rq `R ´ pF1 ` ¨ ¨ ¨ ` F100q

“ 2pF1 ` ¨ ¨ ¨ ` F100´Rq.

Now, observe that the arithmetic mean of F1, F2, . . . , F100´R is not greater than the arithmetic
mean of F1, F2, . . . , F100, because we assumed F1 ď F2 ď ¨ ¨ ¨ ď F100. Therefore

d ď 2p100´Rq ¨
F1 ` ¨ ¨ ¨ ` F100

100
“ 2 ¨

Rp100´Rq

100
.

Finally, we use the AM-GM inequality to see that Rp100 ´ Rq ď 1002

22
which implies d ď 50.

We conclude that there is always a distribution for which the total dissatisfaction level is at
most 50, proving that D ď 50.
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Solution 2. We adopt the same notation as in Solution 1. Let Ci ą 0 be the capacity
of the bowl of the ith Pokémon. By assumption, we have C1 ` C2 ` ¨ ¨ ¨ ` C100 “ 100. We
write Fi :“ Ci ´ tCiu for the fractional part of Ci, and R “ F1 ` F2 ` ¨ ¨ ¨ ` F100. Note that
R “ 100´ tC1u´ ¨ ¨ ¨ ´ tC100u is an integer.

This solution uses the probabilistic method. We consider all distributions in which each
Pokémon receives tCiu ` εi kilograms of food, where εi P t0, 1u and ε1 ` ε2 ` ¨ ¨ ¨ ` ε100 “ R.
There are

`

100
R

˘

such distributions. Suppose each of them occurs in an equal probability. In
other words,

εi “

$

&

%

0 with probability 100´R
100

,

1 with probability R
100
.

The expected value of the dissatisfaction level of the ith Pokémon is

100´R

100

`

Ci ´ tCiu
˘

`
R

100

`

tCiu` 1´ Ci
˘

“
100´R

100
Fi `

R

100
p1´ Fiq.

Hence, the expected value of the total dissatisfaction level is

100
ÿ

i“1

ˆ

100´R

100
Fi `

R

100
p1´ Fiq

˙

“
100´R

100

100
ÿ

i“1

Fi `
R

100

100
ÿ

i“1

p1´ Fiq

“
100´R

100
¨R `

R

100
¨ p100´Rq

“ 2 ¨
Rp100´Rq

100
.

As in Solution 1, this is at most 50. We conclude that there is at least one distribution for
which the total dissatisfaction level is at most 50.
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A2. Let R be the set of real numbers. Let f : RÑ R be a function such that

fpx` yqfpx´ yq ě fpxq2 ´ fpyq2

for every x, y P R. Assume that the inequality is strict for some x0, y0 P R.
Prove that fpxq ě 0 for every x P R or fpxq ď 0 for every x P R.

(Malaysia)

Common remarks. We will say that f has constant sign, if f satisfies the conclusion of the
problem.

Solution 1. We introduce the new variables s :“ x` y and t :“ x´ y. Equivalently, x “ s`t
2

and y “ s´t
2
. The inequality becomes

fpsqfptq ě f

ˆ

s` t

2

˙2

´ f

ˆ

s´ t

2

˙2

for every s, t P R. We replace t by ´t to obtain

fpsqfp´tq ě f

ˆ

s´ t

2

˙2

´ f

ˆ

s` t

2

˙2

.

Summing the previous two inequalities gives

fpsq
`

fptq ` fp´tq
˘

ě 0

for every s, t P R. This inequality is strict for s “ x0 ` y0 and t “ x0 ´ y0 by assumption. In
particular, there exists some t0 “ x0 ´ y0 for which fpt0q ` fp´t0q ‰ 0. Since fpsq

`

fpt0q `
fp´t0q

˘

ě 0 for every s P R, we conclude that fpsq must have constant sign.

Solution 2. We do the same change of variables as in Solution 1 to obtain

fpsqfptq ě f

ˆ

s` t

2

˙2

´ f

ˆ

s´ t

2

˙2

. (1)

In this solution, we replace s by ´s (instead of t by ´t). This gives

fp´sqfptq ě f

ˆ

´s` t

2

˙2

´ f

ˆ

´s´ t

2

˙2

. (2)

We now go back to the original inequality. Substituting x “ y gives fp2xqfp0q ě 0 for every
x P R. If fp0q ‰ 0, then we conclude that f indeed has constant sign. From now on, we will
assume that

fp0q “ 0.

Substituting x “ ´y gives fp´xq2 ě fpxq2. By permuting x and ´x, we conclude that

fp´xq2 “ fpxq2

for every x P R.
Using the relation fpxq2 “ fp´xq2, we can rewrite (2) as

fp´sqfptq ě f

ˆ

s´ t

2

˙2

´ f

ˆ

s` t

2

˙2

.

Summing this inequality with (1), we obtain
`

fpsq ` fp´sq
˘

fptq ě 0

for every s, t P R and we can conclude as in Solution 1.
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Solution 3. We prove the contrapositive of the problem statement. Assume that there exist
a, b P R such that fpaq ă 0 and fpbq ą 0. We want to prove that the inequality is actually an
equality, i.e. it is never strict.
Lemma 1. The function f is odd, i.e. fpxq ` fp´xq “ 0 for every x P R.
Proof. We plug in x “ a`u

2
and y “ a´u

2
in the original inequality, where u is a free variable.

We obtain
fpaqfpuq ě f

´a` u

2

¯2

´ f
´a´ u

2

¯2

.

Replacing u with ´u and summing the two inequalities as in the previous solutions, we get

fpaq
`

fpuq ` fp´uq
˘

ě 0

for every u P R. Since fpaq ă 0 by assumption, we conclude that fpuq ` fp´uq ď 0 for every
u P R.

We can repeat the above argument with b instead of a. Since fpbq ą 0 by assumption, we
conclude that fpuq ` fp´uq ě 0 for every u P R. This implies that fpuq ` fp´uq “ 0 for every
u P R. l

Now, using that f is odd, we can write the following chain of inequalities

fpxq2 ´ fpyq2 ď fpx` yqfpx´ yq

“ ´fpy ` xqfpy ´ xq

ď ´
`

fpyq2 ´ fpxq2
˘

“ fpxq2 ´ fpyq2.

We conclude that every inequality above is actually an inequality, so

fpx` yqfpx´ yq “ fpxq2 ´ fpyq2

for every x, y P R.

Solution 4. As in Solution 3, we prove the contrapositive of the statement. Assume that
there exist a, b P R such that fpaqfpbq ă 0. We want to prove that the inequality is actually
an equality, i.e. it is never strict.

In this solution, we construct an argument by multiplying inequalities, rather than adding
them as in Solutions 1-3.
Lemma 2. fpbqfp´bq ă 0.
Proof. Let x1 :“ a`b

2
and y1 :“ a´b

2
so that a “ x1 ` y1 and b “ x1 ´ y1. Plugging in x “ x1

and y “ y1, we obtain

0 ą fpaqfpbq “ fpx1 ` y1qfpx1 ´ y1q ě fpx1q
2
´ fpy1q

2

which implies fpx1q
2 ´ fpy1q

2 ă 0. Similarly, by plugging in x “ y1 and y “ x1, we get

fpaqfp´bq “ fpy1 ` x1qfpy1 ´ x1q ě fpy1q
2
´ fpx1q

2.

Using fpx1q
2 ´ fpy1q

2 ă 0, we conclude fpaqfp´bq ą 0. If we multiply the two inequalities
fpaqfpbq ă 0 and fpaqfp´bq ą 0, we get fpaq2fpbqfp´bq ă 0 and hence

fpbqfp´bq ă 0.

l

Lemma 3. fpxqfp´xq ď 0 for every x P R.
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Proof. As in Solution 2, we prove that fpxq2 “ fp´xq2 for every x P R and we rewrite the
original inequality as

fpsqfptq ě f

ˆ

s` t

2

˙2

´ f

ˆ

s´ t

2

˙2

.

We replace s by ´s and t by ´t, and use the relation fpxq2 “ fp´xq2, to get

fp´sqfp´tq ě f

ˆ

´s´ t

2

˙2

´ f

ˆ

´s` t

2

˙2

“ f

ˆ

s` t

2

˙2

´ f

ˆ

s´ t

2

˙2

.

Up to replacing t by ´t, we can assume that f
`

s`t
2

˘2
´ f

`

s´t
2

˘2
ě 0. Multiplying the two

previous inequalities leads to
fpsqfp´sqfptqfp´tq ě 0

for every s, t P R. This shows that fpsqfp´sq (as a function of s) has constant sign. Since
fpbqfp´bq ă 0, we conclude that

fpxqfp´xq ď 0

for every x P R. l

Lemma 3, combined with the relation fpxq2 “ fp´xq2, implies fpxq ` fp´xq “ 0 for every
x P R, i.e. f is odd. We conclude with the same argument as in Solution 3.

Comment. The presence of squares on the right-hand side of the inequality is not crucial as Solution 1
illustrates very well. However, it allows non-constant functions such as fpxq “ |x| to satisfy the
conditions of the problem statement.
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A3. Let x1, x2, . . . , x2023 be distinct real positive numbers such that

an “

d

px1 ` x2 ` ¨ ¨ ¨ ` xnq

ˆ

1

x1

`
1

x2

` ¨ ¨ ¨ `
1

xn

˙

is an integer for every n “ 1, 2, . . . , 2023. Prove that a2023 ě 3034.
(Netherlands)

Solution 1. We start with some basic observations. First note that the sequence a1, a2, . . . , a2023

is increasing and thus, since all elements are integers, an`1 ´ an ě 1. We also observe that
a1 “ 1 and

a2 “

d

px1 ` x2q

ˆ

1

x1

`
1

x2

˙

ą 2

by Cauchy-Schwarz inequality and using x1 ‰ x2. So, a2 ě 3.
Now, we proceed to the main part of the argument. We observe that 3034 is about three

halves of 2023. Motivated by this observation, we will prove the following.
Claim. If an`1 ´ an “ 1, then an`2 ´ an`1 ě 2.

In other words, the sequence has to increase by at least 2 at least half of the times. Assuming
the claim is true, since a1 “ 1, we would be done since

a2023 “ pa2023 ´ a2022q ` pa2022 ´ a2021q ` ¨ ¨ ¨ ` pa2 ´ a1q ` a1

ě p2` 1q ¨ 1011` 1

“ 3034.

We now prove the claim. We start by observing that

a2
n`1 “ px1 ` ¨ ¨ ¨ ` xn`1q

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn`1

˙

“ px1 ` ¨ ¨ ¨ ` xnq

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn

˙

` 1

`
1

xn`1

px1 ` ¨ ¨ ¨ ` xnq ` xn`1

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn

˙

ě a2
n ` 1` 2

d

1

xn`1

px1 ` ¨ ¨ ¨ ` xnq ¨ xn`1

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn

˙

“ a2
n ` 1` 2an

“ pan ` 1q2,

where we used AM-GM to obtain the inequality. In particular, if an`1 “ an ` 1, then

1

xn`1

px1 ` ¨ ¨ ¨ ` xnq “ xn`1

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn

˙

. (1)

Now, assume for the sake of contradiction that both an`1 “ an ` 1 and an`2 “ an`1 ` 1 hold.
In this case, (1) gives

1

xn`2

px1 ` ¨ ¨ ¨ ` xn`1q “ xn`2

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn`1

˙

.

We can rewrite this relation as
xn`1

xn`2

ˆ

1

xn`1

px1 ` ¨ ¨ ¨ ` xnq ` 1

˙

“
xn`2

xn`1

ˆ

xn`1

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn

˙

` 1

˙

.

From (1) again, we conclude that xn`1 “ xn`2 which is a contradiction.



Shortlisted problems – solutions 17

Solution 2. The trick is to compare an`2 and an. Observe that

a2
n`2 “ px1 ` ¨ ¨ ¨ ` xn`2q

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn`2

˙

“ px1 ` ¨ ¨ ¨ ` xnq

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn

˙

` pxn`1 ` xn`2q

ˆ

1

xn`1

`
1

xn`2

˙

` px1 ` ¨ ¨ ¨ ` xnq

ˆ

1

xn`1

`
1

xn`2

˙

` pxn`1 ` xn`2q

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn

˙

ě a2
n ` pxn`1 ` xn`2q

ˆ

1

xn`1

`
1

xn`2

˙

` 2

d

pxn`1 ` xn`2q

ˆ

1

xn`1

`
1

xn`2

˙

px1 ` ¨ ¨ ¨ ` xnq

ˆ

1

x1

` ¨ ¨ ¨ `
1

xn

˙

“ a2
n ` pxn`1 ` xn`2q

ˆ

1

xn`1

`
1

xn`2

˙

` 2an

d

pxn`1 ` xn`2q

ˆ

1

xn`1

`
1

xn`2

˙

,

where we used AM-GM to obtain the inequality. Furthermore, we have

pxn`1 ` xn`2q

ˆ

1

xn`1

`
1

xn`2

˙

ą 4

because xn`1 ‰ xn`2 by assumption. Therefore, it follows that

a2
n`2 ą a2

n ` 4` 4an “ pan ` 2q2.

Because an`2 and an are both positive integers, we conclude that

an`2 ě an ` 3.

A simple induction gives a2k`1 ě 3k ` a1 for every k ě 0. Since a1 “ 1, it follows that
a2k`1 ě 3k ` 1. We get the desired conclusion for k “ 1011. l

Comment 1. A similar argument as in Solution 2 shows that a2 ě 3 and a2k ě 3k for every k ě 1.
Actually, these lower bounds on an are sharp (at least for n ď 2023). In other words, there exists a
sequence of distinct values x1, . . . , x2023 ą 0 for which

an “

"

3n´1
2 if n is odd,

3n
2 if n is even,

for n “ 1, . . . , 2023. The value of x1 can be chosen arbitrarily. The next values can be obtained
inductively by solving the quadratic equation

a2
n`1 “ a2

n ` 1`

˜

n
ÿ

i“1

xi

¸

1

xn`1
`

˜

n
ÿ

i“1

1

xi

¸

xn`1

for xn`1. Computation gives, for n ě 1,

xn`1 “

$

’

’

’

&

’

’

’

%

3n

2
´

řn
i“1

1
xi

¯ if n is even,

6n`1˘3
?
np3n`2q

2
´

řn
i“1

1
xi

¯ if n is odd.

One can check (with the help of a computer), that the values x1, . . . , x2023 obtained by choosing x1 “ 1
and “`” every time in the odd case are indeed distinct.

It is interesting to note that the discriminant always vanishes in the even case. This is a consequence
of an`1 “ an ` 1 being achieved as an equality case of AM-GM. Another cute observation is that the
ratio x2{x1 is equal to the fourth power of the golden ratio.
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Comment 2. The estimations in Solutions 1 and 2 can be made more efficiently if one applies the
following form of the Cauchy–Schwarz inequality instead:

a

pa` bqpc` dq ě
?
ac`

?
bd (2)

for arbitrary nonnegative numbers a, b, c, d. Equality occurs if and only if a : c “ b : d “ pa`bq : pc`dq.
For instance, by applying (2) to a “ x1`¨ ¨ ¨`xn, b “ xn`1, c “ 1

x1
`¨ ¨ ¨` 1

xn
and d “ 1

xn`1
we get

an`1 “

d

`

x1 ` ¨ ¨ ¨ ` xn ` xn`1

˘

ˆ

1

x1
` ¨ ¨ ¨ `

1

xn
`

1

xn`1

˙

ě

d

`

x1 ` ¨ ¨ ¨ ` xn
˘

ˆ

1

x1
` ¨ ¨ ¨ `

1

xn

˙

`

d

xn`1 ¨
1

xn`1
“ an ` 1.

A study of equality cases show that equality cannot occur twice in a row, as in Solution 1. Suppose
that an`1 “ an ` 1 and an`2 “ an`1 ` 1 for some index n. By the equality case in (2) we have

`

x1 ` ¨ ¨ ¨ ` xn
˘

` xn`1
ˆ

1

x1
` ¨ ¨ ¨ `

1

xn

˙

`
1

xn`1

“
xn`1

1{xn`1
“ x2

n`1 because an`1 “ an ` 1,

and
x1 ` ¨ ¨ ¨ ` xn ` xn`1

1

x1
` ¨ ¨ ¨ `

1

xn
`

1

xn`1

“
xn`2

1{xn`2
“ x2

n`2 because an`2 “ an`1 ` 1.

The left-hand sides are the same, so xn`1 “ xn`2, but this violates the condition that xn`1 and xn`2

are distinct.
The same trick applies to Solution 2. We can compare an and an`2 directly as

an`2 “

d

`

x1 ` ¨ ¨ ¨ ` xn ` xn`1 ` xn`2

˘

ˆ

1

x1
` ¨ ¨ ¨ `

1

xn
`

1

xn`1
`

1

xn`2

˙

ě

d

`

x1 ` ¨ ¨ ¨ ` xn
˘

ˆ

1

x1
` ¨ ¨ ¨ `

1

xn

˙

`

d

`

xn`1 ` xn`2

˘

¨

ˆ

1

xn`1
`

1

xn`2

˙

“ an `

d

`

xn`1 ` xn`2

˘

¨

ˆ

1

xn`1
`

1

xn`2

˙

ě an ` 2.

In the last estimate, equality is not possible because xn`1 and xn`2 are distinct, so an`2 ą an` 2 and
therefore an`2 ě an ` 3.
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A4. Let Rą0 be the set of positive real numbers. Determine all functions f : Rą0 Ñ Rą0

such that
x
`

fpxq ` fpyq
˘

ě
`

fpfpxqq ` y
˘

fpyq

for every x, y P Rą0.
(Belgium)

Answer: All functions fpxq “ c
x
for some c ą 0.

Solution 1. Let f : Rą0 Ñ Rą0 be a function that satisfies the inequality of the problem
statement. We will write fkpxq “ fpfp¨ ¨ ¨ fpxq ¨ ¨ ¨ qq for the composition of f with itself k
times, with the convention that f 0pxq “ x. Substituting y “ x gives

x ě f 2
pxq.

Substituting x “ fpyq instead leads to fpyq ` f 2pyq ě y ` f 3pyq, or equivalently

fpyq ´ f 3
pyq ě y ´ f 2

pyq.

We can generalise this inequality. If we replace y by fn´1pyq in the above inequality, we get

fnpyq ´ fn`2
pyq ě fn´1

pyq ´ fn`1
pyq,

for every y P Rą0 and for every integer n ě 1. In particular, fnpyq ´ fn`2pyq ě y ´ f 2pyq ě 0
for every n ě 1. Hereafter consider even integers n “ 2m. Observe that

y ´ f 2m
pyq “

m´1
ÿ

i“0

pf 2i
pyq ´ f 2i`2

pyqq ě m
`

y ´ f 2
pyq

˘

.

Since f takes positive values, it holds that y´ f 2mpyq ă y for every m ě 1. So, we have proved
that y ą mpy ´ f 2pyqq for every y P Rą0 and every m ě 1. Since y ´ f 2pyq ě 0, this holds if
only if

f 2
pyq “ y

for every y P Rą0. The original inequality becomes

xfpxq ě yfpyq

for every x, y P Rą0. Hence, xfpxq is constant. We conclude that fpxq “ c{x for some c ą 0.
We now check that all the functions of the form fpxq “ c{x are indeed solutions of the

original problem. First, note that all these functions satisfy fpfpxqq “ c{pc{xq “ x. So it’s
sufficient to check that xfpxq ě yfpyq, which is true since c ě c.

Solution 2. Let f : Rą0 Ñ Rą0 be a function that satisfies the inequality of the problem
statement. As in Solution 1, we prove that

fnpyq ě fn`2
pyq

for every y P Rą0 and every n ě 0. Since f takes positive values, this implies that

yfpyq ě fpyqf 2
pyq ě f 2

pyqf 3
pyq ě ¨ ¨ ¨ .

In other words, yfpyq ě fnpyqfn`1pyq for every y P Rą0 and every n ě 1.



20 Chiba, Japan, 2nd–13th July 2023

We replace x by fnpxq in the original inequality and get

fnpxq ´ fn`2
pxq ě

yfpyq ´ fnpxqfn`1pxq

fpyq
.

Using that xfpxq ě fnpxqfn`1pxq, we obtain

fnpxq ´ fn`2
pxq ě

yfpyq ´ xfpxq

fpyq

for every n ě 0. The same trick as in Solution 1 gives

x ą x´ f 2m
pxq “

m´1
ÿ

i“0

pf 2i
pxq ´ f 2i`2

pxqq ě m ¨
yfpyq ´ xfpxq

fpyq

for every x, y P Rą0 and every m ě 1. Possibly permuting x and y, we may assume that
yfpyq ´ xfpxq ě 0 then the above inequality implies xfpxq “ yfpyq. We conclude as in
Solution 1.
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A5. Let a1, a2, . . . , a2023 be positive integers such that

• a1, a2, . . . , a2023 is a permutation of 1, 2, . . . , 2023, and

• |a1 ´ a2|, |a2 ´ a3|, . . . , |a2022 ´ a2023| is a permutation of 1, 2, . . . , 2022.

Prove that max
`

a1, a2023

˘

ě 507.
(Australia)

Solution. For the sake of clarity, we consider and prove the following generalisation of the
original problem (which is the case N “ 1012):

Let N be a positive integer and a1, a2, . . . , a2N´1 be positive integers such that

• a1, a2, . . . , a2N´1 is a permutation of 1, 2, . . . , 2N ´ 1, and

• |a1 ´ a2|, |a2 ´ a3|, . . . , |a2N´2 ´ a2N´1| is a permutation of 1, 2, . . . , 2N ´ 2.

Then a1 ` a2N´1 ě N ` 1 and hence max
`

a1, a2N´1

˘

ě
P

N`1
2

T

.

Now we proceed to the proof of the generalised statement. We introduce the notion of score
of a number a P t1, 2, . . . , 2N ´ 1u. The score of a is defined to be

spaq :“ |a´N |.

Note that, by the triangle inequality,

|a´ b| ď |a´N |` |N ´ b| “ spaq ` spbq.

Considering the sum |a1 ´ a2|` |a2 ´ a3| ` ¨ ¨ ¨ ` |a2N´2 ´ a2N´1|, we find that

pN ´ 1qp2N ´ 1q “ |a1 ´ a2|` |a2 ´ a3| ` ¨ ¨ ¨ ` |a2N´2 ´ a2N´1|
ď 2

`

spa1q ` spa2q ` ¨ ¨ ¨ ` spa2N´1q
˘

´
`

spa1q ` spa2N´1q
˘

“ 2NpN ´ 1q ´
`

spa1q ` spa2N´1q
˘

.

For the last equality we used that the numbers spa1q, spa2q, . . . , spa2N´1q are a permutation of
0, 1, 1, 2, 2, . . . , N ´ 1, N ´ 1.

Hence, spa1q ` spa2N´1q ď 2NpN ´ 1q ´ pN ´ 1qp2N ´ 1q “ N ´ 1. We conclude that

pN ´ a1q ` pN ´ a2N´1q ď spa1q ` spa2N´1q ď N ´ 1,

which implies a1 ` a2N´1 ě N ` 1.

Comment 1. In the case N “ 1012, such a sequence with max
`

a1, a2023

˘

“ 507 indeed exists:

507, 1517, 508, 1516, . . . , 1011, 1013, 1012, 2023, 1, 2022, 2, . . . , 1518, 506.

For a general even number N , a sequence with max
`

a1, a2N´1

˘

“
P

N`1
2

T

can be obtained similarly. If
N ě 3 is odd, the inequality is not sharp, because maxpa1, a2N´1q “

N`1
2 and a1 ` a2N´1 ě N ` 1

together imply a1 “ a2N´1 “
N`1

2 , a contradiction.
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Comment 2. The formulation of the author’s submission was slightly different:

Author’s formulation. Consider a sequence of positive integers a1, a2, a3, . . . such that
the following conditions hold for all positive integers m and n:

• an`2023 “ an ` 2023,

• If |an`1 ´ an| “ |am`1 ´ am|, then 2023 � pn´mq, and

• The sequence contains every positive integer.

Prove that a1 ě 507.

The two formulations are equivalent up to relatively trivial arguments. Suppose panq is a sequence
satisfying the author’s formulation. From the first and third conditions, we see that a1, . . . , a2023 is
a permutation of 1, . . . , 2023. Moreover, the sequence |ai ´ ai`1| for i “ 1, 2, . . . , 2022 consists of
positive integers ď 2022 and has pairwise distinct elements by the second condition. Hence, it is a
permutation of 1, . . . , 2022. It also holds that a1 ą a2023, since if a1 ă a2023 then |a2024 ´ a2023| “
|2023` a1 ´ a2023| ď 2022, which should be equal to |ai ´ ai`1| for some 1 ď i ď 2022, contradicting
the second condition. This reduces the problem to the Shortlist formulation.

Conversely, if the numbers a1, . . . , a2023 satisfy the conditions of the Shortlist formulation, then,
after possibly reversing the sequence to ensure a1 ą a2023, the sequence can be extended to an infinite
sequence satisfying the conditions of the author’s formulation.
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A6. Let k ě 2 be an integer. Determine all sequences of positive integers a1, a2, . . . for
which there exists a monic polynomial P of degree k with non-negative integer coefficients such
that

P panq “ an`1an`2 ¨ ¨ ¨ an`k

for every integer n ě 1.
(Malaysia)

Answer: The sequence panq must be an arithmetic progression consisting of positive integers
with common difference d ě 0, and P pxq “ px` dq ¨ ¨ ¨ px` kdq.

Common remarks. The following arguments and observations are implicit in the solutions
given below.

Suppose the sequence panq is an arithmetic progression with common difference d ě 0. Then
it satisfies the condition with

P pxq “ px` dq ¨ ¨ ¨
`

x` kd
˘

.

This settles one direction. Now suppose panq is a sequence satisfying the condition. We will
show that it is a non-decreasing arithmetic progression.

Since P pxq has non-negative integer coefficients, it is strictly increasing on the positive real
line. In particular, it holds that, for any positive integer x, y,

P pxq ă P pyq ðñ x ă y.

Furthermore, if the sequence panq is eventually constant, then P pxq “ xk and the sequence
panq is actually constant. Indeed, if P pxq were not the polynomial xk, then P panq “ an`1 ¨ ¨ ¨ an`k
cannot be satisfied for n such that an “ ¨ ¨ ¨ “ an`k. By a descending induction, we conclude
that panq is constant. Thus we can restrict to the case panq is not eventually constant.

Solution 1. We assume that panq is not eventually constant.

Step 1. The first goal is to show that the sequence must be increasing, i.e. an ă an`1 for all
n ě 1.

First, by comparing the two equalities

P panq “ an`1an`2 ¨ ¨ ¨ an`k,

P pan`1q “ an`2 ¨ ¨ ¨ an`kan`k`1,

we observe that

an ă an`1 ðñ P panq ă P pan`1q ðñ an`1 ă an`k`1, (1)
an ą an`1 ðñ P panq ą P pan`1q ðñ an`1 ą an`k`1, (2)
an “ an`1 ðñ P panq “ P pan`1q ðñ an`1 “ an`k`1. (3)

Claim 1. an ď an`1 for all n ě 1.
Proof. Suppose, to the contrary, that anp0q´1 ą anp0q for some np0q ě 2. We will give an infinite
sequence of positive integers np0q ă np1q ă ¨ ¨ ¨ satisfying

anpiq´1 ą anpiq and anpiq ą anpi`1q.

Then anp0q, anp1q, anp2q, . . . is an infinite decreasing sequence of positive integers, which is absurd.
We construct such a sequence inductively. If we have chosen npiq, then we let npi`1q be the

smallest index larger than npiq such that anpiq ą anpi`1q. Note that such an index always exists
and satisfies npiq`1 ď npi`1q ď npiq`k because anpiq ą anpiq`k by (2). We need to check that
anpi`1q´1 ą anpi`1q. This is immediate if npi`1q “ npiq`1 by construction. If npi`1q ě npiq`2,
then anpi`1q´1 ě anpiq by minimality of npi` 1q, and so anpi`1q´1 ě anpiq ą anpi`1q. l
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We are now ready to prove that the sequence an is increasing. Suppose an “ an`1 for some
n ě 1. Then we also have an`1 “ an`k`1 by (3), and since the sequence is non-decreasing we
have an “ an`1 “ an`2 “ ¨ ¨ ¨ “ an`k`1. We repeat the argument for an`k “ an`k`1 and get
that the sequence is eventually constant, which contradicts our assumption. Hence

an ă an`1 for all n ě 1.

Step 2. The next and final goal is to prove that the sequence an is an arithmetic progression.
Observe that we can make differences of terms appear as follows

P panq “ an`1an`2 ¨ ¨ ¨ an`k

“
`

an ` pan`1 ´ anq
˘`

an ` pan`2 ´ anq
˘

¨ ¨ ¨
`

an ` pan`k ´ anq
˘

.

We will prove that, for n large enough, the sum

pan`1 ´ anq ` pan`2 ´ anq ` ¨ ¨ ¨ ` pan`k ´ anq

is equal to the coefficient b of the term xk´1 in P . The argument is based on the following
claim.
Claim 2. There exists a bound A with the following properties:

1. If pc1, . . . , ckq is a k-tuple of positive integers with c1 ` ¨ ¨ ¨ ` ck ą b, then for every x ě A
we have P pxq ă px` c1qpx` c2q ¨ ¨ ¨ px` ckq.

2. If pc1, . . . , ckq is a k-tuple of positive integers with c1 ` ¨ ¨ ¨ ` ck ă b, then for every x ě A
we have P pxq ą px` c1qpx` c2q ¨ ¨ ¨ px` ckq.

Proof. It suffices to show parts 1 and 2 separately, because then we can take the maximum of
two bounds.

We first show part 1. For each single pc1, . . . , ckq such a bound A exists since

P pxq ´ px` c1qpx` c2q ¨ ¨ ¨ px` ckq “ pb´ pc1 ` ¨ ¨ ¨ ` ckqqx
k´1

` pterms of degree ď k ´ 2q

has negative leading coefficient and hence takes negative values for x large enough.
Suppose A is a common bound for all tuples c “ pc1, . . . , ckq satisfying c1 ` ¨ ¨ ¨ ` ck “ b` 1

(note that there are only finitely many such tuples). Then, for any tuple c1 “ pc11, . . . , c1kq with
c11 ` ¨ ¨ ¨ ` c

1
k ą b, there exists a tuple c “ pc1, . . . , ckq with c1 ` ¨ ¨ ¨ ` ck “ b` 1 and c1i ě ci, and

then the inequality for c1 follows from the inequality for c.
We can show part 2 either in a similar way, or by using that there are only finitely many

such tuples. l

Take A satisfying the assertion of Claim 2, and take N such that n ě N implies an ě A.
Then for each n ě N , we have

pan`1 ´ anq ` ¨ ¨ ¨ ` pan`k ´ anq “ b.

By taking the difference of this equality and the equality for n` 1, we obtain

an`k`1 ´ an`1 “ kpan`1 ´ anq

for every n ě N .
We conclude using an extremal principle. Let d “ mintan`1 ´ an | n ě Nu, and suppose it

is attained at some index n ě N . Since

kd “ kpan`1 ´ anq “ an`k`1 ´ an`1 “

k
ÿ

i“1

pan`i`1 ´ an`iq

and each summand is at least d, we conclude that d is also attained at n ` 1, . . . , n ` k, and
inductively at all n1 ě n. We see that the equation P pxq “ px` dqpx` 2dq ¨ ¨ ¨ px` kdq is true
for infinitely many values of x (all an1 for n1 ě n), hence this is an equality of polynomials.
Finally we use (backward) induction to show that an`1 ´ an “ d for every n ě 1.
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Solution 2. We assume that panq is not eventually constant. In this solution, we first prove
an alternative version of Claim 1.
Claim 3. There exist infinitely many n ě 1 with

an ď mintan`1, . . . , an`ku.

Proof. Suppose not, then for all but finitely many n ě 1, it holds that an ą mintan`1, . . . , an`ku.
Hence for all large enough n, there always exist some 1 ď l ď k such that an ą an`l. This
induces an infinite decreasing sequence an ą an`l1 ą an`l2 ą ¨ ¨ ¨ of positive integers, which is
absurd. l

We use Claim 3 to quickly settle the case P pxq “ xk. In that case, for every n with
an ď mintan`1, . . . , an`ku, since an`1 ¨ ¨ ¨ an`k “ akn, it implies an “ an`1 “ ¨ ¨ ¨ “ an`k. This
shows that the sequence is eventually constant, which contradicts our assumption.

From now on, assume
P pxq ą xk for all x ą 0.

Claim 4. For every M ą 0, there exists some N ą 0 such that an ąM for all n ą N .
Proof. Suppose there exists some M ą 0, such that an ď M for infinitely many n. For each i
with ai ďM , we consider the k-tuple pai`1, . . . , ai`kq. Then each of the terms in the k-tuple is
bounded from above by P paiq, and hence by P pMq too. Since the number of such k-tuples is
bounded by P pMqk, we deduce by the Pigeonhole Principle that there exist some indices i ă j
such that pai`1, . . . , ai`kq “ paj`1, . . . , aj`kq. Since an is uniquely determined by the k terms
before it, we conclude that ai`k`1 “ aj`k`1 must hold, and similarly ai`l “ aj`l for all l ě 0,
so the sequence is eventually periodic, for some period p “ j ´ i.

Take K such that an “ an`p for every n ě K. Then, by taking the products of the
inequalities

akn ă P panq “ an`1 ¨ ¨ ¨ an`k

for K ď n ď K ` p´ 1, we obtain

K`p´1
ź

n“K

akn ă
K`p´1
ź

n“K

an`1 ¨ ¨ ¨ an`k

“ aK`1a
2
K`2 ¨ ¨ ¨ a

k´1
K`k´1

˜

K`p
ź

n“K`k

an

¸k

ak´1
K`p`1 ¨ ¨ ¨ a

2
K`p`k´2aK`p`k´1

“

˜

K`p´1
ź

n“K

an

¸k

(by periodicity),

which is a contradiction. l

Write P pxq “ xk ` bxk´1 `Qpxq, where Qpxq is of degree at most k´ 2. Take M such that
x ąM implies xk´1 ą Qpxq.
Claim 5. There exist non-negative integers b1, ¨ ¨ ¨ , bk such that P pxq “ px ` b1q ¨ ¨ ¨ px ` bkq,
and such that, for infinitely many n ě 1, we have an`i “ an ` bi for every 1 ď i ď k.
Proof. By Claims 3 and 4, there are infinitely many n such that

an ąM and an ď mintan`1, . . . , an`ku.

Call such indices n to be good. We claim that if n is a good index then

maxtan`1, . . . , an`ku ď an ` b.
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Indeed, if an`i ě an ` b ` 1, then together with an ď mintan`1, . . . , an`ku and ak´1
n ą Qpanq,

we have
akn ` pb` 1qak´1

n ą akn ` ba
k´1
n `Qpanq “ P panq ě pan ` b` 1qak´1

n ,

a contradiction.
Hence for each good index n, we may write an`i “ an ` bi for all 1 ď i ď k for some

choices of pb1, . . . , bkq (which may depend on n) and 0 ď bi ď b. Again by Pigeonhole Principle,
some k-tuple pb1, . . . , bkq must be chosen for infinitely such good indices n. This means that
the equation P panq “ pan ` b1q ¨ ¨ ¨ pan ` bkq is satisfied by infinitely many good indices n. By
Claim 4, an is unbounded among these an’s, hence P pxq “ px ` b1q ¨ ¨ ¨ px ` bkq must hold
identically. l

Claim 6. We have bi “ ib1 for all 1 ď i ď k.
Proof. Call an index n excellent if an`i “ an ` bi for every 1 ď i ď k. From Claim 5 we know
there are infinitely many excellent n.

We first show that for any pair 1 ď i ă j ď k there is 1 ď l ď k such that bj “ bi ` bl.
Indeed, for such i and j and for excellent n, an ` bj (which is equal to an`j) divides P pan`iq “
śk

l“1pan ` bi ` blq, and hence divides
śk

l“1pbi ` bl ´ bjq. Since an ` bj is unbounded among
excellent n, we have

śk
l“1pbi ` bl ´ bjq “ 0, hence there is l such that bj “ bi ` bl.

In particular, bj “ bi ` bl ě bi, i.e. pb1, . . . , bkq is non-decreasing.
Suppose b1 “ 0 and n is an excellent number. In particular, it holds that an “ an`1.

Moreover, since
an`k`1P panq “ an`1 ¨ ¨ ¨ an`k`1 “ an`1P pan`1q,

we have an “ an`1 “ an`k`1, which divides P pan`iq “
śk

l“1pan ` bi ` blq for each 1 ď i ď k.
Hence an divides

śk
l“1pbi` blq. By the same reasoning, we have bi` bl “ 0 for some l, but since

bi, bl ě 0 we obtain bi “ 0 for each 1 ď i ď k.
Now suppose b1 ě 1. Then, for each 1 ď i ă j ď k, we have bj ´ bi “ bl ě b1 ě 1, hence

pb1, . . . , bkq is strictly increasing. Therefore, the k ´ 1 elements b2 ă b3 ă ¨ ¨ ¨ ă bk are exactly
equal to b1 ` b1 ă ¨ ¨ ¨ ă b1 ` bk´1, since they cannot be equal to b1 ` bk. This gives bi “ ib1 for
all 1 ď i ď k as desired. l

Claim 6 implies P pxq “ px` dqpx` 2dq ¨ ¨ ¨ px` kdq for some d ě 1, and there are infinitely
many indices n with an`i “ an ` id for 1 ď i ď k. By backwards induction, P pan´1q “

an ¨ ¨ ¨ an`k´1 implies an´1 “ an´ d, and so on. Thus a1, . . . , an forms an arithmetic progression
with common difference d. Since n can be arbitrarily large, the whole sequence is an arithmetic
progression too, as desired.

Comment 1. A typical solution would first show some kind of increasing property (assuming an is
not constant), and then use that property to deduce informations on the numbers an`i´an (1 ď i ď k)
and/or on the polynomial P .

Solution 1 shows a strict one: an ă an`1 (arguments after Claim 1), which makes the latter
part easier. Solution 2 (Claims 3 and 4) shows only weaker increasing properties, which require more
complicated/tricky arguments in the latter part but still can solve the problem.

Comment 2. It would be interesting to sort out the case when P can take negative integer coefficients,
or panq is just an integer sequence. Then a decreasing arithmetic progression is possible too, yet that
is not the only possibility. There exist bounded examples such as 1,´1, 1,´1, . . . with P pxq “ ´x2, or
0, 1,´1, 0, 1,´1, . . . with P pxq “ x2´1. If furthermore P is allowed to be non-monic, then the situation
is even more unclear. For instance, the sequence 1, 2, 4, 8, . . . works for the polynomial P pxq “ 8x2.
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A7. Let N be a positive integer. Prove that there exist three permutations a1, a2, . . . , aN ;
b1, b2, . . . , bN ; and c1, c2, . . . , cN of 1, 2, . . . , N such that∣∣∣?ak `a

bk `
?
ck ´ 2

?
N
∣∣∣ ă 2023

for every k “ 1, 2, . . . , N .
(China)

Solution 1. The idea is to approximate the numbers
?

1,
?

2, . . . ,
?
N by the nearest integer

with errors ă 0.5. This gives the following sequence

1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, . . . .

More precisely, for each k ě 1, we round
?
k2 ´ k ` 1, . . . ,

?
k2 ` k to k, so that there are 2k

copies of k.

Step 1. We first consider the easier case when N has the form

N “ mpm` 1q.

In this case, the numbers
?

1,
?

2, . . . ,
?
N are approximated by the elements of the multiset

t1ˆ2, 2ˆ4, 3ˆ6, . . . ,mˆ2mu. Let Tm denote “half of” the multiset, i.e.

Tm :“ t1ˆ1, 2ˆ2, 3ˆ3, . . . ,mˆmu.

We will prove by induction that there exists three permutations pukq, pvkq, and pwkq of the
elements in the multiset Tm such that uk`vk`wk “ 2m`1 is constant for k “ 1, 2, . . . , mpm`1q

2
.

When m “ 1, take 1` 1` 1 “ 3. When m “ 2, take p1, 2, 2q ` p2, 1, 2q ` p2, 2, 1q “ p5, 5, 5q.
Suppose that we have constructed three permutations pukq, pvkq, and pwkq of Tm´1 satisfying
uk ` vk ` wk “ 2m´ 1 for every k “ 1, 2, . . . , mpm´1q

2
. For Tm, we note that

Tm “ Tm´1 \ tmˆmu,

and also
Tm “ pTm´1 ` 1q \ t1, 2, . . . ,mu. (1)

Here Tm´1 ` 1 means to add 1 to all elements in Tm´1. We construct the permutations pu1kq,
pv1kq, and pw1kq of Tm as follows:

• For k “ 1, 2, . . . , mpm´1q
2

, we set u1k “ uk, v1k “ vk ` 1, w1k “ wk ` 1.

• For k “ mpm´1q
2

` r with r “ 1, 2, . . . ,m, we set u1k “ m, v1k “ r, w1k “ m` 1´ r.

It is clear from (1) that pu1kq, pv1kq, and pw1kq give three permutations of Tm, and that they
satisfy u1k ` v1k ` w1k “ 2m` 1 for every k “ 1, 2, . . . , mpm`1q

2
.

The inductive construction can be visualised by the 3ˆ mpm`1q
2

matrix
»

–

u1 . . . umpm´1q{2 m . . . m
v1 ` 1 . . . vmpm´1q{2 ` 1 1 . . . m
w1 ` 1 . . . wmpm´1q{2 ` 1 m . . . 1

fi

fl ,

in which the three rows represent the permutations pu1kq, pv1kq, pw1kq, and the sum of the three
entries of each column is 2m` 1.
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Thus, when N “ m2 `m, we can construct permutations pakq, pbkq, and pckq of 1, 2, . . . , N
such that

2m` 1´ 1.5 ă
?
ak `

a

bk `
?
ck ă 2m` 1` 1.5. (2)

This gives ∣∣∣?ak `a

bk `
?
ck ´ 2

?
N
∣∣∣ ă 2.5 ă 2023,

where we used that ´1 ă 2m´ 2
?
m2 `m ă 0 for positive m.

Step 2. We now proceed to the general case. Let m be such that

mpm` 1q ď N ă pm` 1qpm` 2q.

Write N “ mpm` 1q ` t for some t P t0, 1, . . . , 2m` 1u and let

L :“

Z

4

9
N

^

.

We will make use of the following inequalities below:

N ą m2, N ă pm` 2q2, t ď 2m` 1, L` 1 ą 4N{9, L ď 4N{9.

As above, we construct three permutations pakq, pbkq, and pckq of 1, 2, . . . ,mpm`1q satisfying
(2). Now we construct the three required permutations pAkq, pBkq, and pCkq of 1, 2, . . . , N as
follows:

For k “ 1, 2, . . . ,mpm ` 1q, if ak ď L, take Ak “ ak, and if ak ą L, take Ak “ ak ` t. For
k “ mpm` 1q ` r with r “ 1, 2, . . . , t, set Ak “ L` r. Define the permutations pBkq and pCkq
similarly. Now for k “ 1, 2, . . . ,mpm ` 1q, we show 0 ď

?
Ak ´

?
ak ď 2. The lower bound is

obvious. If m ď 1, then N ď 5 and hence
?
Ak ´

?
ak ď

?
5´

?
1 ď 2. If m ě 2, then

a

Ak ´
?
ak “

Ak ´ ak
?
Ak `

?
ak
ď

t

2
?
L` 1

ď
2m` 1

4
3
m

ď 2.

We have similar inequalities for pBkq and pCkq. Thus

2
?
N ´ 4.5 ă 2m` 1´ 1.5 ď

a

Ak `
a

Bk `
a

Ck ď 2m` 1` 1.5` 6 ă 2
?
N ` 8.5.

For k “ m2 `m` 1, . . . ,m2 `m` t, we have

2
?
N ă 3

?
L` 1 ď

a

Ak `
a

Bk `
a

Ck ď 3
?
L` t ď

?
4N ` 9t ă 2

?
N ` 8.5.

To sum up, we have defined three permutations pAkq, pBkq, and pCkq of 1, 2, . . . , N , such
that ∣∣∣aAk `

a

Bk `
a

Ck ´ 2
?
N
∣∣∣ ă 8.5 ă 2023.

holds for every k “ 1, 2, . . . , N . l

Solution 2. This is a variation of Solution 1 that uses induction for Step 2.
Let n be an integer satisfying 0 ď n ď m` 1 and define the multiset Tm,n by

Tm,n :“ t1ˆ1, 2ˆ2, 3ˆ3, . . . ,mˆm, pm` 1qˆnu.

In other words, Tm,0 “ Tm, Tm,n “ Tm \ tpm` 1qˆnu and Tm,m`1 “ Tm`1, where Tm is the set
defined in Solution 1.
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Claim. There exist three permutations pukq, pvkq, pwkq of Tm,n such that

$

&

%

uk ` vk ` wk “ 2m` 1 pn “ 0q,
uk ` vk ` wk P t2m` 1, 2m` 2, 2m` 3u p1 ď n ď mq,
uk ` vk ` wk “ 2m` 3 pn “ m` 1q.

Proof. We proceed by induction on m. If n “ 0 or n “ m ` 1, the assertion can be proved as
in Solution 1. If 1 ď n ď m, we note that

Tm,n “ Tm´1,n \ tmˆpm´nq, pm` 1qˆnu “ pTm´1,n ` 1q \ t1, 2, . . . ,mu.

From the hypothesis of induction, it follows that we have three permutations pukq, pvkq, pwkq of
Tm´1,n satisfying uk`vk`wk P t2m´1, 2m, 2m`1u for every k. We construct the permutations
pu1kq, pv1kq, and pw1kq of Tm,n as follows:

• For k “ 1, 2, . . . , mpm´1q
2

` n, we set u1k “ uk, v1k “ vk ` 1, and w1k “ wk ` 1.

• For k “ mpm´1q
2

` n ` r with r “ 1, 2, . . . ,m, we set u1k “ m if 1 ď r ď m ´ n while
u1k “ m` 1 if m´ n` 1 ď r ď m, v1k “ r, and w1k “ m` 1´ r.

It is clear from the construction that pu1kq, pv1kq, and pw1kq give three permutations of Tm,n,
and they satisfy u1k ` v1k ` w1k P t2m` 1, 2m` 2, 2m` 3u for every k “ 1, 2, . . . , mpm`1q

2
` n.

Again, we can visualise the construction using the matrix

»

–

u1 . . . umpm´1q{2`n m . . . m m` 1 . . . m` 1
v1 ` 1 . . . vmpm´1q{2`n ` 1 1 . . . . . . . . . . . . m
w1 ` 1 . . . wmpm´1q{2`n ` 1 m . . . . . . . . . . . . 1

fi

fl . l

In general, we have mpm`1q ď N ă pm`1qpm`2q for some m ě 0. Set N “ mpm`1q` t
for some t P t0, 1, . . . , 2m ` 1u. Then the approximation of t

?
1,
?

2, . . . ,
?
Nu by the nearest

integer with errors ă 0.5 is a multiset

t1ˆ2, 2ˆ4, . . . ,mˆ2m, pm` 1qˆtu “ Tm,n1 \ Tm,n2

with n1 “ tt{2u and n2 “ rt{2s.
Since 0 ď n1 ď n2 ď m ` 1, by using the Claim we can construct permutations pakq, pbkq,

and pckq to satisfy the following inequality:

2m` 1´ 1.5 ă
?
ak `

a

bk `
?
ck ă 2m` 3` 1.5.

Since m ă
?
N ă m` 2, it follows that

2
?
N ´ 4.5 ă 2m` 1´ 1.5 ă

?
ak `

a

bk `
?
ck ă 2m` 3` 1.5 ă 2

?
N ` 4.5,

and so ∣∣∣aAk `
a

Bk `
a

Ck ´ 2
?
N
∣∣∣ ă 4.5 ă 2023. l
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A

B C

1

2 3

4 5 6

... ...

¨ ¨ ¨
`

m
2

˘

` 1
`

m`1
2

˘

Solution 3. This solution is based on the geometrical insight of equilateral triangles.

Step 1. We first consider the easier case of triangle numbers

N “
mpm` 1q

2
.

As shown in the following picture, consider the triangular shaped lattice points inside an equi-
lateral triangle ABC with a total of N points. The lattice is built in a way that the `th row
has exactly ` points for each ` “ 1, 2, . . . ,m. Rows are numbered in three different ways, one
for each vertex.

Each point Pk in the triangular lattice is labelled with a triple of integers pak, bk, ckq as
follows. The first coordinate is called the A-coordinate, and so on for B,C. To define the
A-coordinate, denoted Wap‚q, first label the lattice points by 1, 2, 3, . . . starting with the point
closest to A and then going down the rows with the rule that within a row, the labelling is
from left to right (see right picture). The B-coordinate, denoted Wbp‚q, is defined by rotating
the A-coordinate counterclockwise by 120˝. The C-coordinate, denoted Wcp‚q, similarly, by
rotating the A-coordinate counterclockwise by 240˝.

Assume that a point P lies in the `ath row from the vertex A, in the `bth row from the vertex
B, and in the `cth row from the vertex C. Note that `a is proportional to the height of A in
the triangle, minus the height of P . Since inside an equilateral triangle, the sum of the lengths
of the heights from a point to the three sides is independent of the point, we must have

`a ` `b ` `c “ 2m` 1 “
?

8N ` 1.

Since there are exactly 1` 2` ¨ ¨ ¨ ` ` “ `p``1q
2

points in the first ` rows, the A-labeling WapP q
of the point P satisfies

`ap`a ´ 1q

2
` 1 ď WapP q ď

`ap`a ` 1q

2
.

In paticular,
ˆ

`a ´
1

2

˙2

ă 2WapP q ă

ˆ

`a `
1

2

˙2

.

Taking the cyclic sum gives∣∣∣a2WapP q `
a

2WbpP q `
a

2WcpP q ´ p`a ` `b ` `cq
∣∣∣ ă 3

2

and thus ∣∣∣∣∣aWapP q `
a

WbpP q `
a

WcpP q ´ 2

c

N `
1

8

∣∣∣∣∣ ă 3

2
¨

1
?

2
“

3
?

2

4
.

Step 2. Now, for a general positive integer N , there exists a positive integer m such that

mpm´ 1q

2
` 1 ď N ď

mpm` 1q

2
.
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Write N “
mpm`1q

2
´ t with t P t0, 1, . . . ,m ´ 1u. We modify the above construction for

mpm`1q
2

points into a construction for N points as follows. We remove t arbitrary points from
the mth row (namely the bottom row) of the triangular lattice. The remaining triangular lattice
has mpm`1q

2
´ t “ N points, and we assign their A-, B-, and C-coordinates as before (in the

same order, yet skipping over the points that are removed so that the coordinates exactly form
permutations of 1, 2, . . . , N).

For each point P in the triangular lattice (that was not removed earlier), suppose that it is in
the `ath, `bth, and `cth row when viewed from A, B, and C, respectively. Now the A-coordinates
WapP q still satisfies

`ap`a ´ 1q

2
` 1 ď WapP q ď

`ap`a ` 1q

2
.

The B-coordinate WbpP q satisfies

p`b ´ 1qp`b ´ 2q

2
` 1 ď WbpP q ď

`bp`b ` 1q

2
,

because, viewing from point B, we have removed either 0 or 1 point from each row, and the
first `b´1 rows have at least 0`1`¨ ¨ ¨`p`b´2q “ p`b´1qp`b´2q

2
points left. For the same reason,

the C-labeling WcpP q satisfies

p`c ´ 1qp`c ´ 2q

2
` 1 ď WcpP q ď

`cp`c ` 1q

2
.

From this, we deduce that

`a ´
1

2
ă
a

2WapP q ă `a `
1

2
,

`b ´
3

2
ă
a

2WbpP q ă `b `
1

2
,

`c ´
3

2
ă
a

2WcpP q ă `c `
1

2
.

Combining all above with the inequalities 2m´1 ă 2
?

2N ă 2m`1 and `a``b``c “ 2m`1,
we deduce that

2
?

2N ´
7

2
ă p2m` 1q ´

7

2
ă
a

2WapP q `
a

2WbpP q `
a

2WcpP q

ă p2m` 1q `
3

2
ă 2

?
2N `

7

2
.

Therefore, for each point P , we have

∣∣aWapP q `
a

WbpP q `
a

WcpP q ´ 2
?
N
∣∣ ă 7

2
¨

1
?

2
ă 2.5 ă 2013.

We may finally order of the N points in an arbitrary way. Then the A-labelings Wap‚q give
the permutation a1, . . . , aN , the B-labelings Wbp‚q give b1, . . . , bN , and the C-labelings Wcp‚q

give c1, . . . , cN .
For each k “ 1, 2, . . . , N , we have∣∣?ak `a

bk `
?
ck ´ 2

?
N
∣∣ ă 2.5 ă 2023. l
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Comment. We can make the same argument as in Solution 3 without using geometry or diagram
instead using barycentric coordinates in integers and lexicographic order.

For N “
mpm`1q

2 , consider a set

X “ tpx, y, zq P Z3 | 0 ď x, y, z ď m´ 1, x` y ` z “ m´ 1u.

and the lexicographic order of X, i.e.

px, y, zq ą px1, y1, z1q ðñ

$

’

&

’

%

x ą x1 or
x “ x1 and y ą y1 or
x “ x1 and y “ y1 and z ą z1.

Then for an element Qk “ pxk, yk, zkq

• Define WapQkq so that pxk, yk, zkq is the WapQkq
th biggest element in X.

• DefineWbpQkq so that pyk, zk, xkq is theWbpQkq
th biggest element inX 1 “ tpy, z, xq | px, y, zq P Xu.

• DefineWcpQkq so that pzk, xk, ykq is theWcpQkq
th biggest element inX2 “ tpz, x, yq | px, y, zq P Xu.

The same argument as in Solution 2 then holds.
Observe that for an element Qk “ pxk, yk, zkq, it holds that `a “ m ´ xk, `b “ m ´ yk, and

`c “ m´ zk.
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Combinatorics

C1. Let m and n be positive integers greater than 1. In each unit square of an mˆn grid
lies a coin with its tail-side up. A move consists of the following steps:

1. select a 2ˆ 2 square in the grid;

2. flip the coins in the top-left and bottom-right unit squares;

3. flip the coin in either the top-right or bottom-left unit square.

Determine all pairs pm,nq for which it is possible that every coin shows head-side up after a
finite number of moves.

(Thailand)

Answer: The answer is all pairs pm,nq satisfying 3 | mn.

Solution 1. Let us denote by pi, jq-square the unit square in the ith row and the jth column.
We first prove that when 3 | mn, it is possible to make all the coins show head-side up. For

integers 1 ď i ď m ´ 1 and 1 ď j ď n ´ 1, denote by Api, jq the move that flips the coin in
the pi, jq-square, the pi` 1, j ` 1q-square and the pi, j ` 1q-square. Similarly, denote by Bpi, jq
the move that flips the coin in the pi, jq-square, pi` 1, j ` 1q-square, and the pi` 1, jq-square.
Without loss of generality, we may assume that 3 | m.

Case 1: n is even.
We apply the moves

• Ap3k ´ 2, 2l ´ 1q for all 1 ď k ď m
3
and 1 ď l ď n

2
,

• Bp3k ´ 1, 2l ´ 1q for all 1 ď k ď m
3
and 1 ď l ď n

2
.

This process will flip each coin exactly once, hence all the coins will face head-side up
afterwards.

Case 2: n is odd.
We start by applying

• Ap3k ´ 2, 2l ´ 1q for all 1 ď k ď m
3
and 1 ď l ď n´1

2
,

• Bp3k ´ 1, 2l ´ 1q for all 1 ď k ď m
3
and 1 ď l ď n´1

2

as in the previous case. At this point, the coins on the rightmost column have tail-side up and
the rest of the coins have head-side up. We now apply the moves

• Ap3k ´ 2, n´ 1q, Ap3k ´ 1, n´ 1q and Bp3k ´ 2, n´ 1q for every 1 ď k ď m
3
.
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For each k, the three moves flip precisely the coins in the p3k ´ 2, nq-square, the p3k ´ 1, nq-
square, and the p3k, nq-square. Hence after this process, every coin will face head-side up.

We next prove that mn being divisible by 3 is a necessary condition. We first label the
pi, jq-square by the remainder of i` j ´ 2 when divided by 3, as shown in the figure.
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2

1

0

1

0

2

1

2

1

0

2

0

2

1

0

...
...

...
...

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

. . .

Let T pcq be the number of coins facing head-side up in those squares whose label is c.
The main observation is that each move does not change the parity of both T p0q ´ T p1q and
T p1q ´ T p2q, since a move flips exactly one coin in a square with each label. Initially, all
coins face tail-side up at the beginning, thus all of T p0q, T p1q, T p2q are equal to 0. Hence it
follows that any configuration that can be achieved from the initial state must satisfy the parity
condition of

T p0q ” T p1q ” T p2q pmod 2q.

We now calculate the values of T for the configuration in which all coins are facing head-side
up.

• When m ” n ” 1 pmod 3q, we have T p0q ´ 1 “ T p1q “ T p2q “ mn´1
3

.

• When m ” 1 pmod 3q and n ” 2 pmod 3q, or m ” 2 pmod 3q and n ” 1 pmod 3q, we
have T p0q ´ 1 “ T p1q ´ 1 “ T p2q “ mn´2

3
.

• When m ” n ” 2 pmod 3q, we have T p0q “ T p1q ´ 1 “ T p2q “ mn´1
3

.

• When m ” 0 pmod 3q or n ” 0 pmod 3q, we have T p0q “ T p1q “ T p2q “ mn
3
.

From this calculation, we see that T p0q, T p1q and T p2q has the same parity only when mn is
divisible by 3.

Comment 1. The original proposal of the problem also included the following question as part (b):

For each pair pm,nq of integers greater than 1, how many configurations can be obtained
by applying a finite number of moves?

An explicit construction of a sequence of moves shows that T p0q, T p1q, and T p2q having the same
parity is a necessary and sufficient condition for a configuration to obtainable after a finite sequence
of moves, and this shows that the answer is 2mn´2.

Comment 2. A significantly more difficult problem is to ask the following question: for pairs pm,nq
such that the task is possible (i.e. 3 | mn), what is the smallest number of moves required to complete
this task? The answer is:

• mn
3 if mn is even;

• mn
3 ` 2 if mn is odd.

To show this, we observe that we can flip all coins in any 2ˆ 3 (or 3ˆ 2) by using a minimum of two
moves. Furthermore, when mn is odd with 3 | mn, it is impossible to tile an mˆn table with one type
of L-tromino and its 180˝-rotated L-tromino (disallowing rotations and reflections). The only known
proof of the latter claim is lengthy and difficult, and it requires some group-theoretic arguments by
studying the title homotopy group given by these two L-tromino tiles. This technique was developed
by J. H. Conway and J. C. Lagarias in Tiling with Polyominoes and Combinatorial Group Theory,
Journal of Combinatorial Group Theory, Series A 53, 183-208 (1990).
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Comment 3. Here is neat way of defining the invariant. Consider a finite field F4 “ t0, 1, ω, ω ` 1u,
where 1` 1 “ ω2 ` ω ` 1 “ 0 in F4. Consider the set

H “ tpi, jq|1 ď i ď m, 1 ď j ď n, the coin in the pi, jq-square is head-side upu.

and the invariant
IpHq “

ÿ

pi,jqPH

ωi`j P F4.

Then the value of IpHq does not change under applying moves, and when all coins are tail-side up, it
holds that IpHq “ 0. On the other hand, its value when all coins are head-side up can be computed as

IpHq “
m
ÿ

i“1

n
ÿ

j“1

ωi`j “
´

m
ÿ

i“1

ωi
¯´

n
ÿ

j“1

ωj
¯

.

This is equal to 0 P F4 if and only if 3 | mn.
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C2. Determine the maximal length L of a sequence a1, . . . , aL of positive integers satisfying
both the following properties:

• every term in the sequence is less than or equal to 22023, and

• there does not exist a consecutive subsequence ai, ai`1, . . . , aj (where 1 ď i ď j ď L) with
a choice of signs si, si`1, . . . , sj P t1,´1u for which

siai ` si`1ai`1 ` ¨ ¨ ¨ ` sjaj “ 0.

(Czech Republic)

Answer: The answer is L “ 22024 ´ 1.

Solution. We prove more generally that the answer is 2k`1´ 1 when 22023 is replaced by 2k for
an arbitrary positive integer k. Write n “ 2k.

We first show that there exists a sequence of length L “ 2n´1 satisfying the properties. For
a positive integer x, denote by v2pxq the maximal nonnegative integer v such that 2v divides x.
Consider the sequence a1, . . . , a2n´1 defined as

ai “ 2k´v2piq.

For example, when k “ 2 and n “ 4, the sequence is

4, 2, 4, 1, 4, 2, 4.

This indeed consists of positive integers less than or equal to n “ 2k, because 0 ď v2piq ď k for
1 ď i ď 2k`1 ´ 1.
Claim 1. This sequence a1, . . . , a2n´1 does not have a consecutive subsequence with a choice
of signs such that the signed sum equals zero.
Proof. Let 1 ď i ď j ď 2n´ 1 be integers. The main observation is that amongst the integers

i, i` 1, . . . , j ´ 1, j,

there exists a unique integer x with the maximal value of v2pxq. To see this, write v “
maxpv2piq, . . . , v2pjqq. If there exist at least two multiples of 2v amongst i, i`1, . . . , j, then one
of them must be a multiple of 2v`1, which is a contradiction.

Therefore there is exactly one i ď x ď j with v2pxq “ v, which implies that all terms except
for ax “ 2k´v in the sequence

ai, ai`1, . . . , aj

are a multiple of 2k´v`1. The same holds for the terms siai, si`1ai`1, . . . , sjaj, hence the sum
cannot be equal to zero. l

We now prove that there does not exist a sequence of length L ě 2n satisfying the conditions
of the problem. Let a1, . . . , aL be an arbitrary sequence consisting of positive integers less than
or equal to n. Define a sequence s1, . . . , sL of signs recursively as follows:

• when s1a1 ` ¨ ¨ ¨ ` si´1ai´1 ď 0, set si “ `1,

• when s1a1 ` ¨ ¨ ¨ ` si´1ai´1 ě 1, set si “ ´1.

Write

bi “
i
ÿ

j“1

siai “ s1a1 ` ¨ ¨ ¨ ` siai,

and consider the sequence
0 “ b0, b1, b2, . . . , bL.
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Claim 2. All terms bi of the sequence satisfy ´n` 1 ď bi ď n.
Proof. We prove this by induction on i. It is clear that b0 “ 0 satisfies ´n ` 1 ď 0 ď n. We
now assume ´n` 1 ď bi´1 ď n and show that ´n` 1 ď bi ď n.

Case 1: ´n` 1 ď bi´1 ď 0.
Then bi “ bi´1 ` ai from the definition of si, and hence

´n` 1 ď bi´1 ă bi´1 ` ai ď bi´1 ` n ď n.

Case 2: 1 ď bi´1 ď n.
Then bi “ bi´1 ´ ai from the definition of si, and hence

´n` 1 ď bi´1 ´ n ď bi´1 ´ ai ă bi´1 ď n.

This finishes the proof. l

Because there are 2n integers in the closed interval r´n` 1, ns and at least 2n` 1 terms in
the sequence b0, b1, . . . , bL (as L` 1 ě 2n` 1 by assumption), the pigeonhole principle implies
that two distinct terms bi´1, bj (where 1 ď i ď j ď L) must be equal. Subtracting one from
another, we obtain

siai ` ¨ ¨ ¨ ` sjaj “ bj ´ bi´1 “ 0

as desired.

Comment. The same argument gives a bound L ď 2n ´ 1 that works for all n, but this bound is
not necessarily sharp when n is not a power of 2. For instance, when n “ 3, the longest sequence has
length L “ 3.
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C3. Let n be a positive integer. We arrange 1 ` 2 ` ¨ ¨ ¨ ` n circles in a triangle with n
rows, such that the ith row contains exactly i circles. The following figure shows the case n “ 6.

n “ 6

In this triangle, a ninja-path is a sequence of circles obtained by repeatedly going from a
circle to one of the two circles directly below it. In terms of n, find the largest value of k such
that if one circle from every row is coloured red, we can always find a ninja-path in which at
least k of the circles are red.

(Netherlands)

Answer: The maximum value is k “ 1` tlog2 nu.

Solution 1. Write N “ tlog2 nu so that we have 2N ď n ď 2N`1 ´ 1.
We first provide a construction where every ninja-path passes through at most N ` 1 red

circles. For the row i “ 2a ` b for 0 ď a ď N and 0 ď b ă 2a, we colour the p2b` 1qth circle.

Then every ninja-path passes through at most one red circle in each of the rows 2a, 2a `
1, . . . , 2a`1 ´ 1 for each 0 ď a ď N . It follows that every ninja-path passes through at most
N ` 1 red circles.

We now prove that for every colouring, there exists a ninja-path going through at least N`1
red circles. For each circle C, we assign the maximum number of red circles in a ninja-path
that starts at the top of the triangle and ends at C.

1
2 1

2 2 2
2 3 2 2

2 3 3 2 3

Note that

• if C is not red, then the number assigned to C is the maximum of the number assigned
to the one or two circles above C, and

• if C is red, then the number assigned to C is one plus the above maximum.
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Write v1, . . . , vi for the numbers in row i, and let vm be the maximum among these numbers.
Then the numbers in row i` 1 will be at least

v1, . . . , vm´1, vm, vm, vm`1, . . . , vi,

not taking into account the fact that one of the circles in row i` 1 is red. On the other hand,
for the red circle in row i` 1, the lower bound on the assigned number can be increased by 1.
Therefore the sum of the numbers in row i` 1 is at least

pv1 ` ¨ ¨ ¨ ` viq ` vm ` 1.

Using this observation, we prove the following claim.
Claim 1. Let σk be the sum of the numbers assigned to circles in row k. Then for 0 ď j ď N ,
we have σ2j ě j ¨ 2j ` 1.
Proof. We use induction on j. This is clear for j “ 0, since the number in the first row is always
1. For the induction step, suppose that σ2j ě j ¨ 2j ` 1. Then the maximum value assigned to
a circle in row 2j is at least j ` 1. As a consequence, for every k ě 2j, there is a circle on row
k with number at least j ` 1. Then by our observation above, we have

σk`1 ě σk ` pj ` 1q ` 1 “ σk ` pj ` 2q.

Then we get

σ2j`1 ě σ2j ` 2jpj ` 2q ě j ¨ 2j ` 1` 2jpj ` 2q “ pj ` j ` 2q2j ` 1 “ pj ` 1q2j`1
` 1.

This completes the inductive step. l

For j “ N , this immediately implies that some circle in row 2N has number at least N ` 1.
This shows that there is a ninja-path passing through at least N ` 1 red circles.

Solution 2. We give an alternative proof that there exists a ninja-path passing through at
least N ` 1 red circles. Assign numbers to circles as in the previous solution, but we only focus
on the numbers assigned to red circles.

For each positive integer i, denote by ei the number of red circles with number i.
Claim 2. If the red circle on row l has number i, then ei ď l.
Proof. Note that if two circles C and C 1 are both assigned the same number i, then there cannot
be a ninja-path joining the two circles. We partition the triangle into a smaller triangle with
the red circle in row l at its top along with l ´ 1 lines that together cover all other circles.

In each set, there can be at most one red circle with number i, and therefore ei ď l. l

We observe that if there exists a red circle C with number i ě 2, then there also exists a
red circle with number i ´ 1 in some row that is above the row containing C. This is because
the second last red circle in the ninja-path ending at C has number i´ 1.
Claim 3. We have ei ď 2i´1 for every positive integer i.
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Proof. We prove by induction on i. The base case i “ 1 is clear, since the only red circle with
number 1 is the one at the top of the triangle . We now assume that the statement is true for
1 ď i ď j´1 and prove the statement for i “ j. If ej “ 0, there is nothing to prove. Otherwise,
let l be minimal such that the red circle on row l has number j. Then all the red circles on row
1, . . . , l ´ 1 must have number less than j. This shows that

l ´ 1 ď e1 ` e2 ` ¨ ¨ ¨ ` ej´1 ď 1` 2` ¨ ¨ ¨ ` 2j´2
“ 2j´1

´ 1.

This proves that l ď 2j´1, and by Claim 2, we also have ej ď l. Therefore ej ď 2j´1. l

We now see that

e1 ` e2 ` ¨ ¨ ¨ ` eN ď 1` ¨ ¨ ¨ ` 2N´1
“ 2N ´ 1 ă n.

Therefore there exists a red circle with number at least N ` 1, which means that there exists
a ninja-path passing through at least N ` 1 red circles.

Solution 3. We provide yet another proof that there exists a ninja-path passing through at
least N ` 1 red circles. In this solution, we assign to a circle C the maximum number of red
circles on a ninja-path starting at C (including C itself).

3
2 2

1 1 2
0 1 0 1

0 0 0 0 1

Denote by fi the number of red circles with number i. Note that if a red circle C has number
i, and there is a ninja-path from C to another red circle C 1, then the number assigned to C 1
must be less than i.
Claim 4. If the red circle on row l has number less than or equal to i, then fi ď l.
Proof. This proof is same as the proof of Claim 2. The additional input is that if the red circle
on row l has number strictly less than i, then the smaller triangle cannot have a red circle with
number i. l

Claim 5. We have
f1 ` f2 ` ¨ ¨ ¨ ` fi ď n´

Z

n

2i

^

for all 0 ď i ď N .
Proof. We use induction on i. The base case i “ 0 is clear as the left hand side is the empty
sum and the right hand side is zero. For the induction step, we assume that i ě 1 and that
the statement is true for i´ 1. Let l be minimal such that the red circle on row l has number
less than or equal to i. Then all the red circles with number less than or equal to i lie on rows
l, l ` 1, . . . , n, and therefore

f1 ` f2 ` ¨ ¨ ¨ ` fi ď n´ l ` 1.

On the other hand, the induction hypothesis together with the fact that fi ď l shows that

f1 ` ¨ ¨ ¨ ` fi´1 ` fi ď n´

Z

n

2i´1

^

` l.

Averaging the two inequalities gives

f1 ` ¨ ¨ ¨ ` fi ď n´
1

2

Z

n

2i´1

^

`
1

2
.
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Since the left hand side is an integer, we conclude that

f1 ` ¨ ¨ ¨ ` fi ď n´

Z

1

2

Z

n

2i´1

^^

“ n´

Z

n

2i

^

.

This completes the induction step. l

Taking i “ N , we obtain

f1 ` f2 ` ¨ ¨ ¨ ` fN ď n´

Z

n

2N

^

ă n.

This implies that there exists a ninja-path passing through at least N ` 1 red circles.

Comment. Using essentially the same argument, one may inductively prove

ea ` ea`1 ` ¨ ¨ ¨ ` ea`i´1 ď n´

Z

n

2i

^

.

instead. Taking a “ 1 and i “ N gives the desired statement.
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C4. Let n ě 2 be a positive integer. Paul has a 1 ˆ n2 rectangular strip consisting of n2

unit squares, where the ith square is labelled with i for all 1 ď i ď n2. He wishes to cut the
strip into several pieces, where each piece consists of a number of consecutive unit squares, and
then translate (without rotating or flipping) the pieces to obtain an nˆn square satisfying the
following property: if the unit square in the ith row and jth column is labelled with aij, then
aij ´ pi` j ´ 1q is divisible by n.

Determine the smallest number of pieces Paul needs to make in order to accomplish this.
(U.S.A.)

Answer: The minimum number of pieces is 2n´ 1.

Solution 1. For the entirety of the solution, we shall view the labels as taking values in Z{nZ,
as only their values modulo n play a role.

Here are two possible constructions consisting of 2n´ 1 pieces.

1. Cut into pieces of sizes n, 1, n, 1, . . . , n, 1, 1, and glue the pieces of size 1 to obtain the last
row.

2. Cut into pieces of sizes n, 1, n´1, 2, n´2, . . . , n´1, 1, and switch the pairs of consecutive
strips that add up to size n.

We now prove that using 2n ´ 1 pieces is optimal. It will be more helpful to think of the
reverse process: start with n pieces of size 1 ˆ n, where the kth piece has squares labelled
k, k ` 1, . . . , k ` n´ 1. The goal is to restore the original 1ˆ n2 strip.

Note that each piece, after cutting at appropriate places, is of the form a, a ` 1, . . . , b ´ 1.
Construct an (undirected but not necessarily simple) graph Γ with vertices labelled by 1, . . . , n,
where a piece of the form a, a` 1, . . . , b´ 1 corresponds to an edge from a to b. We make the
following observations.

• The cut pieces came from the kth initial piece k, k ` 1, . . . , k ` n ´ 1 corresponds to a
cycle γk (possibly of length 1) containing the vertex k.

• Since it is possible to rearrange the pieces into one single 1 ˆ n2 strip, the graph Γ has
an Eulerian cycle.

• The number of edges of Γ is equal to the total number of cut pieces.

The goal is to prove that Γ has at least 2n ´ 1 edges. Since Γ has an Eulerian cycle, it is
connected. For every 1 ď k ď n, pick one edge from γk, delete it from Γ to obtain a new graph
Γ1. Since no two cycles γi and γj share a common edge, removing one edge from each cycle
does not affect the connectivity of the graph. This shows that the new graph Γ1 must also be
connected. Therefore Γ1 has at least n´ 1 edges, which means that Γ has at least 2n´ 1 edges.

Solution 2. We provide an alternative proof that at least 2n´1 pieces are needed. Instead of
having a linear strip, we work with a number of circular strips, each having length a multiple
of n and labelled as

1, 2, . . . , n, 1, 2, . . . , n, . . . , 1, 2, . . . , n,

where there are n2 cells in total across all circular strips. The goal is still to create the n ˆ n
square by cutting and translating. Here, when we say “translating” the strips, we imagine that
each cell has a number written on it and the final nˆn square is required to have every number
written in the same upright, non-mirrored orientation.

Note that the number of cuts will be equal to the number of pieces, because performing
l ě 1 cuts on a single circular strip results in l pieces.
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Consider any “seam” in the interior of the final square, between two squares S and T , so
that S and T belongs to two separate pieces. We are interested in the positions of these two
squares in the original circular strips, with the aim of removing the seam.

• If the two squares S and T come from the same circular strip and are adjacent, then
the cut was unnecessary and we can simply remove the seam and reduce the number of
required cuts by 1. The circular strips are not affected.

• If these two squares S and T were not adjacent, then they are next to two different cuts
(either from the same circular strip or two different circular strips). Denote the two cuts
by pS|Y q and pX|T q. We perform these two cuts and then glue the pieces back according
to pS|T q and pX|Y q. Performing this move would either split one circular strip into two
or merge two circular strips into one, changing the number of circular strips by at most
one. Afterwards, we may eliminate cut pS|T q since it is no longer needed, which also
removes the corresponding seam from the final square.

By iterating this process, eventually we reach a state where there are some number of circular
strips, but the final nˆ n square no longer has any interior seams.

Since no two rows of the square can be glued together while maintaining the consecutive
numbering, the only possibility is to have exactly n circular strips, each with length n. In this
state at least n cuts are required to reassemble the square. Recall that each seam removal
operation changed the number of circular strips by at most one. So if we started with only
one initial circular strip, then at least n ´ 1 seams were removed. Hence in total, at least
n ` pn ´ 1q “ 2n ´ 1 cuts are required to transform one initial circular strip into the final
square. Hence at least 2n´ 1 pieces are required to achieve the desired outcome.

Solution 3. As with the previous solution, we again work with circular strips. In particular,
we start out with k circular strips, each having length a multiple of n and labelled as

1, 2, . . . , n, 1, 2, . . . , n, . . . , 1, 2, . . . , n,

where there are n2 cells in total across all k circular strips. The goal is still to create the nˆ n
square by cutting and translating the circular strips.
Claim. Constructing the n ˆ n square requires at least 2n ´ k cuts (or alternatively, 2n ´ k
pieces).
Proof. We prove by induction on n. The base case n “ 1 is clear, because we can only have
k “ 1 and the only way of producing a 1ˆ 1 square from a 1ˆ 1 circular strip is by making a
single cut. We now assume that n ě 2 and the statement is true for n´ 1.

Each cut is a cut between a cell of label i on the left and a cell of label i ` 1 on the right
side, for a unique 1 ď i ď n. Let ai be the number of such cuts, so that a1 ` a2 ` ¨ ¨ ¨ ` an is
the total number of cuts. Since all the left and right edges of the nˆ n square at the end must
be cut, we have ai ě 1 for all 1 ď i ď n.

If ai ě 2 for all i, then
a1 ` a2 ` ¨ ¨ ¨ ` an ě 2n ą 2n´ k

and hence there is nothing to prove. We therefore assume that there exist some 1 ď m ď n for
which am “ 1. This unique cut must form the two ends of the linear strip

m` 1,m` 2, . . . ,m´ 1` n,m` n

from the final product. There are two cases.

Case 1: The strip is a single connected piece.
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In this case, the strip must have come from a single circular strip of length exactly n. We
now remove this circular strip from of the cutting and pasting process. By definition of m, none
of the edges between m and m ` 1 are cut. Therefore we may pretend that all the adjacent
pairs of cells labelled m and m` 1 are single cells. The induction hypothesis then implies that

a1 ` ¨ ¨ ¨ ` am´1 ` am`1 ` ¨ ¨ ¨ ` an ě 2pn´ 1q ´ pk ´ 1q.

Adding back in am, we obtain

a1 ` ¨ ¨ ¨ ` an ě 2pn´ 1q ´ pk ´ 1q ` 1 “ 2n´ k.

Case 2: The strip is not a single connected piece.
Say the linear strip m ` 1, . . . ,m ` n is composed of l ě 2 pieces C1, . . . , Cl. We claim

that if we cut the initial circular strips along both the left and right end points of the pieces
C1, . . . , Cl, and then remove them, the remaining part consists of at most k ` l ´ 2 connected
pieces (where some of them may be circular and some of them may be linear). This is because
Cl, C1 form a consecutive block of cells on the circular strip, and removing l ´ 1 consecutive
blocks from k circular strips results in at most k ` pl ´ 1q ´ 1 connected pieces.

Once we have the connected pieces that form the complement of C1, . . . , Cl, we may glue
them back at appropriate endpoints to form circular strips. Say we get k1 circular strips after
this procedure. As we are gluing back from at most k ` l ´ 2 connected pieces, we see that

k1 ď k ` l ´ 2.

We again observe that to get from the new circular strips to the n ´ 1 strips of size 1 ˆ n, we
never have to cut along the cell boundary between labels m and m`1. Therefore the induction
hypothesis applies, and we conclude that the total number of pieces is bounded below by

l ` p2pn´ 1q ´ k1q ě l ` 2pn´ 1q ´ pk ` l ´ 2q “ 2n´ k.

This finishes the induction step, and therefore the statement holds for all n. l

Taking k “ 1 in the claim, we see that to obtain a nˆn square from a circular 1ˆn2 strip,
we need at least 2n´ 1 connected pieces. This shows that constructing the nˆn square out of
a linear 1ˆ n2 strip also requires at least 2n´ 1 pieces.
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C5. Elisa has 2023 treasure chests, all of which are unlocked and empty at first. Each day,
Elisa adds a new gem to one of the unlocked chests of her choice, and afterwards, a fairy acts
according to the following rules:

• if more than one chests are unlocked, it locks one of them, or

• if there is only one unlocked chest, it unlocks all the chests.

Given that this process goes on forever, prove that there is a constant C with the following
property: Elisa can ensure that the difference between the numbers of gems in any two chests
never exceeds C, regardless of how the fairy chooses the chests to lock.

(Israel)

Solution 1. We will prove that such a constant C exists when there are n chests for n an odd
positive integer. In fact we can take C “ n ´ 1. Elisa’s strategy is simple: place a gem in the
chest with the fewest gems (in case there are more than one such chests, pick one arbitrarily).

For each integer t ě 0, let at1 ď at2 ď ¨ ¨ ¨ ď atn be the numbers of gems in the n chests at the
end of the tth day. In particular, a0

1 “ ¨ ¨ ¨ “ a0
n “ 0 and

at1 ` a
t
2 ` ¨ ¨ ¨ ` a

t
n “ t.

For each t ě 0, there is a unique index m “ mptq for which at`1
m “ atm ` 1. We know that

atj ą atmptq for all j ą mptq, since atmptq ă at`1
mptq ď at`1

j “ atj. Elisa’s strategy also guarantees
that if an index j is greater than the remainder of t when divided by n (i.e. the number of
locked chests at the end of the tth day), then atj ě atmptq, because some chest with at most atj
gems must still be unlocked at the end of the tth day.

Recall that a sequence x1 ď x2 ď ¨ ¨ ¨ ď xn of real numbers is said to majorise another
sequence y1 ď y2 ď ¨ ¨ ¨ ď yn of real numbers when for all 1 ď k ď n we have

x1 ` x2 ` ¨ ¨ ¨ ` xk ď y1 ` y2 ` ¨ ¨ ¨ ` yk

and
x1 ` x2 ` ¨ ¨ ¨ ` xn “ y1 ` y2 ` ¨ ¨ ¨ ` yn.

Our strategy for proving atn ´ at1 ď n ´ 1 is to inductively show that the sequence patiq is
majorised by some other sequence pbtiq.

We define this other sequence pbtiq as follows. Let b0
k “ k ´ n`1

2
for 1 ď k ď n. As n is

odd, this is a strictly increasing sequence of integers, and the sum of its terms is 0. Now define
bti “ b0

i ` t t´i
n

u` 1 for t ě 1 and 1 ď i ď n. Thus for t ě 0,

bt`1
i “

#

bti if t` 1 ı i pmod nq,

bti ` 1 if t` 1 ” i pmod nq.

From these properties it is easy to see that

• bt1 ` b
t
2 ` ¨ ¨ ¨ ` b

t
n “ t for all t ě 0, and

• bti ď bti`1 for all t ě 0 and 1 ď i ď n´ 1, with the inequality being strict if t ı i pmod nq.

Claim 1. For each t ě 0, the sequence of integers bt1, bt2, . . . , btn majorises the sequence of
integers at1, at2, . . . , atn.
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Proof. We use induction on t. The base case t “ 0 is trivial. Assume t ě 0 and that pbtiq
majorises patiq. We want to prove the same holds for t` 1.

First note that the two sequences pbt`1
i q and pat`1

i q both sum up to t` 1. Next, we wish to
show that for 1 ď k ă n, we have

bt`1
1 ` bt`1

2 ` ¨ ¨ ¨ ` bt`1
k ď at`1

1 ` at`1
2 ` ¨ ¨ ¨ ` at`1

k .

When t`1 is replaced by t, the above inequality holds by the induction hypothesis. For the sake
of contradiction, suppose k is the smallest index such that the inequality for t ` 1 fails. Since
the left hand side increases by at most 1 during the transition from t to t ` 1, the inequality
for t` 1 can fail only if all of the following occur:

• bt1 ` b
t
2 ` ¨ ¨ ¨ ` b

t
k “ at1 ` a

t
2 ` ¨ ¨ ¨ ` a

t
k,

• t` 1 ” j pmod nq for some 1 ď j ď k (so that bt`1
j “ btj ` 1),

• mptq ą k (so that at`1
i “ ati for 1 ď i ď k).

The first point and the minimality of k tell us that bt1, . . . , btk majorises at1, . . . , atk as well (again
using the induction hypothesis), and in particular btk ě atk.

The second point tells us that the remainder of t when divided by n is at most k ´ 1,
so atk ě atmptq (by Elisa’s strategy). But by the third point (mptq ě k ` 1) and the non-
decreasing property of ati, we must have the equalities atk “ atk`1 “ atmptq. On the other hand,
atk ď btk ă btk`1, with the second inequality being strict because t ı k pmod nq. We conclude
that

bt1 ` b
t
2 ` ¨ ¨ ¨ ` b

t
k`1 ą at1 ` a

t
2 ` ¨ ¨ ¨ ` a

t
k`1,

a contradiction to the induction hypothesis. l

This completes the proof as it implies

atn ´ a
t
1 ď btn ´ b

t
1 ď b0

n ´ b
0
1 “ n´ 1.

Comment 1. The statement is true even when n is even. In this case, we instead use the initial state

b0k “

#

k ´ n
2 ´ 1 k ď n

2 ,

k ´ n
2 k ą n

2 .

The same argument shows that C “ n works.

Comment 2. The constants C “ n ´ 1 for odd n and C “ n for even n are in fact optimal. To
see this, we will assume that the fairy always locks a chest with the minimal number of gems. Then
at every point, if a chest is locked, any other chest with fewer gems will also be locked. Thus mptq is
always greater than the remainder of t when divided by n. This implies that the quantities

Ik “ at1 ` ¨ ¨ ¨ ` a
t
k ´ b

t
1 ´ ¨ ¨ ¨ ´ b

t
k

for each 0 ď k ď n, do not increase regardless of how Elisa acts. If Elisa succeeds in keeping atn ´ at1
bounded, then these quantities must also be bounded; thus they are eventually constant, say for t ě t0.
This implies that for all t ě t0, the number mptq is equal to 1 plus the remainder of t when divided by
n.
Claim 2. For T ě t0 divisible by n, we have

aT1 ă aT2 ă ¨ ¨ ¨ ă aTn .
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Proof. Suppose otherwise, and let j be an index for which aTj “ aTj`1. We have mpT ` k ´ 1q “ k for
all 1 ď k ď n. Then aT`jj ą aT`jj`1 , which gives a contradiction. l

This implies aTn ´ aT1 ě n ´ 1, which already proves optimality of C “ n ´ 1 for odd n. For even
n, note that the sequence paTi q has sum divisible by n, so it cannot consist of n consecutive integers.
Thus aTn ´ aT1 ě n for n even.

Solution 2. We solve the problem when 2023 is replaced with an arbitrary integer n. We
assume that Elisa uses the following strategy:

At the beginning of the pnt` 1qth day, Elisa first labels her chests as Ct
1, . . . , C

t
n so

that before she adds in the gem, the number of gems in Ct
i is less than or equal Ct

j

for all 1 ď i ă j ď n. Then for days nt ` 1, nt ` 2, . . . , nt ` n, she adds a gem to
chest Ct

i , where i is chosen to be minimal such that Ct
i is unlocked.

Denote by cti the number of gems in chest Ct
i at the beginning of the pnt` 1qth day, so that

ct1 ď ct2 ď ¨ ¨ ¨ ď ctn

by construction. Also, denote by δti the total number of gems added to chest Ct
i during days

nt` 1, . . . , nt` n. We make the following observations.

• We have c0
1 “ c0

2 “ ¨ ¨ ¨ “ c0
n “ 0.

• We have ct1 ` ¨ ¨ ¨ ` ctn “ nt, since n gems are added every n days.

• The sequence pct`1
i q is a permutation of the sequence pcti ` δtiq for all t ě 0.

• We have δt1 ` ¨ ¨ ¨ ` δtn “ n for all t ě 0.

• Since Elisa adds a gem to an unlocked chest Ct
i with i minimal, we have

δt1 ` δ
t
2 ` ¨ ¨ ¨ ` δ

t
k ě k

for every 1 ď k ď n and t ě 0.

We now define another sequence of sequences of integers as follows.

d0
i “ 3npi´ n`1

2
q, dti “ d0

i ` t.

We observe that
dt1 ` ¨ ¨ ¨ ` d

t
n “ ct1 ` ¨ ¨ ¨ ` c

t
n “ nt.

Claim 3. For each t ě 0, the sequence pdtiq majorises the sequence pctiq.
Proof. We induct on t. For t “ 0, this is clear as all the terms in the sequence pctiq are equal.
For the induction step, we assume that pdtiq majorises pctiq. Given 1 ď k ď n ´ 1, we wish to
show that

dt`1
1 ` ¨ ¨ ¨ ` dt`1

k ď ct`1
1 ` ¨ ¨ ¨ ` ct`1

k .

Case 1: ct`1
1 , . . . , ct`1

k is a permutation of ct1 ` δt1, . . . , ctk ` δtk.
Since dt1 ` ¨ ¨ ¨ ` dtk ď ct1 ` ¨ ¨ ¨ ` c

t
k by the induction hypothesis, we have

k
ÿ

i“1

dt`1
i “ k `

k
ÿ

i“1

dti ď k `
k
ÿ

i“1

cti ď
k
ÿ

i“1

pcti ` δ
t
iq “

k
ÿ

i“1

ct`1
i .
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Case 2: ct`1
1 , . . . , ct`1

k is not a permutation of ct1 ` δt1, . . . , ctk ` δtk.
In this case, we have cti ` δti ą ctj ` δ

t
j for some i ď k ă j. It follows that

ctk ` n ě cti ` n ě cti ` δ
t
i ą ctj ` δ

t
j ě ctj ě ctk`1.

Using dtk ` 3n “ dtk`1 and the induction hypothesis, we obtain

k
ÿ

i“1

ct`1
i ě

k
ÿ

i“1

cti ą ct1 ` ¨ ¨ ¨ ` c
t
k´1 `

1

2
ctk `

1

2
ctk`1 ´

n

2
“

1

2

k´1
ÿ

i“1

cti `
1

2

k`1
ÿ

i“1

cti ´
n

2

ě
1

2

k´1
ÿ

i“1

dti `
1

2

k`1
ÿ

i“1

dti ´
n

2
“ n`

k
ÿ

i“1

dti ě k `
k
ÿ

i“1

dti “
k
ÿ

i“1

dt`1
i ,

This finishes the induction step. l

It follows that
ctn ´ c

t
1 ď dtn ´ d

t
1 “ 3npn´ 1q.

From day nt`1 to day npt`1q`1, Elisa adds n gems, and therefore the difference may increase
by at most n. This shows that the difference of the number of gems in two chests never exceeds
C “ 3npn´ 1q ` n.
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C6. Let N be a positive integer, and consider an N ˆ N grid. A right-down path is a
sequence of grid cells such that each cell is either one cell to the right of or one cell below the
previous cell in the sequence. A right-up path is a sequence of grid cells such that each cell is
either one cell to the right of or one cell above the previous cell in the sequence.

Prove that the cells of the N ˆ N grid cannot be partitioned into less than N right-down
or right-up paths. For example, the following partition of the 5ˆ 5 grid uses 5 paths.

(Canada)

Solution 1. We define a good parallelogram to be a parallelogram composed of two isosceles
right-angled triangles glued together as shown below.

Given any partition into k right-down or right-up paths, we can find a corresponding packing
of good parallelograms that leaves an area of k empty. Thus, it suffices to prove that we must
leave an area of at least N empty when we pack good parallelograms into an N ˆN grid. This
is actually equivalent to the original problem since we can uniquely recover the partition into
right-down or right-up paths from the corresponding packing of good parallelograms.

We draw one of the diagonals in each cell so that it does not intersect any of the good
parallelograms. Now, view these segments as mirrors, and consider a laser entering each of
the 4N boundary edges (with starting direction being perpendicular to the edge), bouncing
along these mirrors until it exits at some other edge. When a laser passes through a good
parallelogram, its direction goes back to the original one after bouncing two times. Thus, if the
final direction of a laser is perpendicular to its initial direction, it must pass through at least
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one empty triangle. Similarly, if the final direction of a laser is opposite to its initial direction,
it must pass though at least two empty triangles. Using this, we will estimate the number of
empty triangles in the N ˆN grid.

We associate the starting edge of a laser with the edge it exits at. Then, the boundary edges
are divided into 2N pairs. These pairs can be classified into three types:

(1) a pair of a vertical and a horizontal boundary edge,

(2) a pair of boundary edges from the same side, and

(3) a pair of boundary edges from opposite sides.

Since the beams do not intersect, we cannot have one type p3q pair from vertical boundary
edges and another type p3q pair from horizontal boundary edges. Without loss of generality,
we may assume that we have t pairs of type p3q and they are all from vertical boundary edges.
Then, out of the remaining boundary edges, there are 2N horizontal boundary edges and 2N´2t
vertical boundary edges. It follows that there must be at least t pairs of type p2q from horizontal
boundary edges. We know that a laser corresponding to a pair of type p1q passes through at
least one empty triangle, and a laser corresponding to a pair of type p2q passes through at least
two empty triangles. Thus, as the beams do not intersect, we have at least p2N´2tq`2 ¨t “ 2N
empty triangles in the grid, leaving an area of at least N empty as required.

Solution 2. We apply an induction on N . The base case N “ 1 is trivial. Suppose that the
claim holds for N ´ 1 and prove it for N ě 2.

Let us denote the path containing the upper left corner by P . If P is right-up, then every
cell in P is in the top row or in the leftmost column. By the induction hypothesis, there are at
least N ´ 1 paths passing through the lower right pN ´ 1q ˆ pN ´ 1q subgrid. Since P is not
amongst them, we have at least N paths.

Next, assume that P is right-down. If P contains the lower right corner, then we get an
pN ´ 1qˆ pN ´ 1q grid by removing P and glueing the remaining two parts together. The main
idea is to extend P so that it contains the lower right corner and the above procedure gives a
valid partition of an pN ´ 1q ˆ pN ´ 1q grid.

Ñ

We inductively construct Q, which denotes an extension of P as a right-down path. Initially,
Q “ P . Let A be the last cell of Q, B be the cell below A, and C be the cell to the right of
A (if they exist). Suppose that A is not the lower right corner, and that p˚q both B and C do
not belong to the same path as A. Then, we can extend Q as follows (in case we have two or
more options, we can choose any one of them to extend Q).

1. If B belongs to a right-down path R, then we add the part of R, from B to its end, to Q.

2. If C belongs to a right-down path R, then we add the part of R, from C to its end, to Q.

3. If B belongs to a right-up path R which ends at B, then we add the part of R in the
same column as B to Q.
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4. If C belongs to a right-up path R which starts at C, then we add the part of R in the
same row as C to Q.

5. Otherwise, B and C must belong to the same right-up path R. In this case, we add B
and the cell to the right of B to Q.

Note that if B does not exist, then case p4q must hold. If C does not exist, then case p3q must
hold.

It is easily seen that such an extension also satisfies the hypothesis p˚q, so we can repeat
this construction to get an extension of P containing the lower right corner, denoted by Q. We
show that this is a desired extension, i.e. the partition of an pN ´ 1q ˆ pN ´ 1q grid obtained
by removing Q and glueing the remaining two parts together consists of right-down or right-up
paths.

Take a path R in the partition of the N ˆ N grid intersecting Q. If the intersection of Q
and R occurs in case p1q or case p2q, then there exists a cell D in R such that the intersection
of Q and R is the part of R from D to its end, so R remains a right-down path after removal
of Q. Similarly, if the intersection of Q and R occurs in case p3q or case p4q, then R remains a
right-up path after removal of Q. If the intersection of Q and R occurs in case p5q, then this
intersection has exactly two adjacent cells. After the removal of these two cells (as we remove
Q), R is divided into two parts that are glued into a right-up path.

Thus, we may apply the induction hypothesis to the resulting partition of an pN´1qˆpN´1q
grid, to find that it must contain at least N ´ 1 paths. Since P is contained in Q and is not
amongst these paths, the original partition must contain at least N paths.
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C7. The Imomi archipelago consists of n ě 2 islands. Between each pair of distinct islands
is a unique ferry line that runs in both directions, and each ferry line is operated by one of
k companies. It is known that if any one of the k companies closes all its ferry lines, then
it becomes impossible for a traveller, no matter where the traveller starts at, to visit all the
islands exactly once (in particular, not returning to the island the traveller started at).

Determine the maximal possible value of k in terms of n.
(Ukraine)

Answer: The largest k is k “ tlog2 nu.

Solution. We reformulate the problem using graph theory. We have a complete graph Kn on
n nodes (corresponding to islands), and we want to colour the edges (corresponding to ferry
lines) with k colours (corresponding to companies), so that every Hamiltonian path contains
all k different colours. For a fixed set of k colours, we say that an edge colouring of Kn is good
if every Hamiltonian path contains an edge of each one of these k colours.

We first construct a good colouring of Kn using k “ tlog2 nu colours.
Claim 1. Take k “ tlog2 nu. Consider the complete graph Kn in which the nodes are labelled
by 1, 2, . . . , n. Colour node i with colour minptlog2 iu ` 1, kq (so the colours of the first nodes
are 1, 2, 2, 3, 3, 3, 3, 4, . . . and the last n´ 2k´1 ` 1 nodes have colour k), and for 1 ď i ă j ď n,
colour the edge ij with the colour of the node i. Then the resulting edge colouring of Kn is
good.
Proof. We need to check that every Hamiltonian path contains edges of every single colour. We
first observe that the number of nodes assigned colour k is n´ 2k´1` 1. Since n ě 2k, we have

n´ 2k´1
` 1 ě

n

2
` 1.

This implies that in any Hamiltonian path, there exists an edge between two nodes with colour
k. Then that edge must have colour k.

We next show that for each 1 ď i ă k, every Hamiltonian path contains an edge of colour i.
Suppose the contrary, that some Hamiltonian path does not contain an edge of colour i. Then
nodes with colour i can only be adjacent to nodes with colour less than i inside the Hamiltonian
path. Since there are 2i´1 nodes with colour i and 2i´1 ´ 1 nodes with colour less than i, the
Hamiltonian path must take the form

piq Ø pă iq Ø piq Ø pă iq Ø ¨ ¨ ¨ Ø pă iq Ø piq,

where piq denotes a node with colour i, pă iq denotes a node with colour less than i, and Ø
denotes an edge. But this is impossible, as the Hamiltonian path would not have any nodes
with colours greater than i. l

Fix a set of k colours, we now prove that if there exists a good colouring of Kn, then
k ď tlog2 nu. For n “ 2, this is trivial, so we assume n ě 3. For any node v of Kn and
1 ď i ď k, we denote by dipvq the number of edges with colour i incident with the node v.
Lemma 1. Consider a good colouring of Kn, and let AB be an arbitrary edge with colour i.
If dipAq ` dipBq ď n ´ 1, then the colouring will remain good after recolouring edge AB with
any other colour.
Proof. Suppose there exists a good colouring together with an edge AB of colour i, such that if
AB is recoloured with another colour, the colouring will no longer be good. The failure of the
new colouring being good will come from colour i, and thus there exists a Hamiltonian path
containing edge AB such that initially (i.e. before recolouring) AB is the only edge of colour i
in this path. Writing A “ A0 and B “ B0, denote this Hamiltonian path by

As Ø As´1 Ø ¨ ¨ ¨ Ø A1 Ø A0 Ø B0 Ø B1 Ø ¨ ¨ ¨ Ø Bt´1 Ø Bt,
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where s, t ě 0 and s` t` 2 “ n.
In the initial colouring, we observe the following.

• The edge B0As must have colour i, since otherwise the path

A0 Ø A1 Ø ¨ ¨ ¨ Ø As´1 Ø As Ø B0 Ø B1 Ø ¨ ¨ ¨ Ø Bt´1 Ø Bt

has no edges of colour i.

• Similarly, the edge A0Bt must have colour i.

• For each 0 ď p ă s, at least one of the edges B0Ap and A0Ap`1 must have colour i, since
otherwise the path

As Ø ¨ ¨ ¨ Ø Ap`2 Ø Ap`1 Ø A0 Ø A1 Ø ¨ ¨ ¨ Ø Ap´1 Ø Ap Ø B0 Ø B1 Ø ¨ ¨ ¨ Ø Bt

has no edges of colour i.

• Similarly, for each 0 ď q ă t, at least one of the edges A0Bq and B0Bq`1 must have
colour i.

In the above list, each edge A0X appears exactly once and also each edge B0X appears exactly
once (where A0B0 and B0A0 are counted separately). Adding up the contributions to dipAq `
dipBq, we obtain

dipAq ` dipBq ě ps` 1q ` pt` 1q “ n.

This contradicts our assumption that dipAq ` dipBq ď n´ 1. l

Our strategy now is to repeatedly recolour the edges using Lemma 1 until the colouring has
a simple structure. For a node v, we define mpvq to be the largest value of dipvq over all colours
i.
Lemma 2. Assume we have a good colouring of Kn. Let A,B be two distinct nodes, and let j
be the colour of edge AB where 1 ď j ď k. If

• mpAq ě mpBq and

• mpAq “ dipAq for some i ‰ j,

then after recolouring edge AB with colour i, the colouring remains good.
Proof. Note that

djpAq ` djpBq ď pn´ 1´mpAqq `mpBq ď n´ 1,

and so we may apply Lemma 1. l

Lemma 3. Assume we have a good colouring of Kn. Let S be a nonempty set of nodes. Let
A P S be a node such that mpAq ě mpBq for all B P S, and choose 1 ď i ď k for which
dipAq “ mpAq. Then after recolouring the edge AB with colour i for all B P S distinct from
A, the colouring remains good.
Proof. We repeatedly perform the following operation until all edges AB with B P S have
colour i:

choose an edge AB with B P S that does not have colour i, and recolour it with
colour i.

By Lemma 2, the colouring remains good after one operation. Moreover, mpAq increase by 1
during an operation, and all other mpBq may increase by at most 1. This shows that mpAq will
remain maximal amongst mpBq for B P S. We will also have dipAq “ mpAq after the operation,
since both sides increase by 1. Therefore the operation can be performed repeatedly, and the
colouring remains good. l
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We first apply Lemma 3 to the set of all n nodes in Kn. After recolouring, there exists a
node A1 such that every edge incident with A1 has colour c1. We then apply Lemma 3 to the
set of nodes excluding A1, and we obtain a colouring where

• every edge incident with A1 has colour c1,

• every edge incident with A2 except for A1A2 has colour c2.

Repeating this process, we arrive at the following configuration:

• the n nodes of Kn are labelled A1, A2, . . . , An,

• the node Ai has a corresponding colour ci (as a convention, we also colour Ai with ci),

• for all 1 ď u ă v ď n, the edge between Au and Av has colour cu,

• this colouring is good.

Claim 2. For every colour i, there exists a 1 ď p ď n such that the number of nodes of colour
i amongst A1, . . . , Ap is greater than p{2.
Proof. Suppose the contrary, that for every 1 ď p ď n, there are at most tp{2u nodes of colour
i. We then construct a Hamiltonian path not containing any edge of colour i. Let Ax1 , . . . , Axt
be the nodes with colour i, where x1 ă x2 ă ¨ ¨ ¨ ă xt, and let Ay1 , Ay2 , . . . , Ays be the nodes
with colour different from i, where y1 ă y2 ă ¨ ¨ ¨ ă ys. We have s ` t “ n and t ď tn{2u, so
t ď s. We also see that yj ă xj for all 1 ď j ď t, because otherwise, A1, A2, . . . , Axj will have
j nodes of colour i and less than j nodes of colour different from i. Then we can construct a
Hamiltonian path

Ax1 Ø Ay1 Ø Ax2 Ø Ay2 Ø Ax3 Ø ¨ ¨ ¨ Ø Axt Ø Ayt Ø Ayt`1 Ø ¨ ¨ ¨ Ø Ays

that does not contain an edge with colour i. This contradicts that the colouring is good. l

So for every colour i, there has to be an integer pi with 1 ď pi ď n such that there are more
than pi{2 nodes assigned colour i amongst A1, . . . , Api . Choose the smallest such pi for every
i, and without loss of generality assume

p1 ă p2 ă ¨ ¨ ¨ ă pk.

Note that the inequalities are strict by the definition of pi.
Then amongst the nodes A1, . . . , Api , there are at least rppj ` 1q{2s nodes of colour j for all

1 ď j ď i. Then

pi ě
Qp1 ` 1

2

U

`

Qp2 ` 1

2

U

` ¨ ¨ ¨ `

Qpi ` 1

2

U

.

This inductively shows that
pi ě 2i ´ 1

for all 1 ď i ď k, and this already proves n ě 2k ´ 1.
It remains to show that n “ 2k ´ 1 is not possible. If n “ 2k ´ 1, then all inequalities have

to be equalities, so pi “ 2i ´ 1 and there must be exactly 2i´1 nodes of colour i. Moreover,
there cannot be a node of colour i amongst A1, A2, . . . , Api´1

, and so the set of nodes of colour
i must precisely be

A2i´1 , A2i´1`1, . . . , A2i´1.

Then we can form a Hamiltonian path

A2k´1 Ø A1 Ø A2k´1`1 Ø A2 Ø A2k´1`2 Ø A3 Ø . . .Ø An,

which does not contain an edge of colour k. This is a contradiction, and therefore n ě 2k.
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Geometry

G1. Let ABCDE be a convex pentagon such that =ABC “ =AED “ 90˝. Suppose
that the midpoint of CD is the circumcentre of triangle ABE. Let O be the circumcentre of
triangle ACD.

Prove that line AO passes through the midpoint of segment BE.
(Slovakia)

Solution 1 (Area Ratio).
A

C

D

M

B

E

O

X

N

D1

C1

Let M be the midpoint of CD and X “ BC X ED. Since =ABX “ =AEX “ 90˝, AX is a
diameter of the circumcircle of 4ABE so the midpoint of AX is the circumcentre of 4ABE.
Therefore, the midpoint of AX coincides with M . This means ACXD is a parallelogram and
in particular, AD ‖ BC and AC ‖ ED.

We denote the area of 4P1P2P3 by rP1P2P3s. To prove that line AO bisects BE, it suffices
to show rOABs “ rOAEs.

Let C 1, D1 be the midpoints of AC,AD respectively. Since OD1 K AD, AD ‖ BC, and
BC K AB, we have AB ‖ OD1, so rOABs “ rD1ABs. Using AD ‖ BC again, we have
rD1ABs “ rD1ACs. Therefore

rOABs “ rD1ABs “ rD1ACs “
1

2
rACDs.

Similarly

rOAEs “ rC 1AEs “ rC 1ADs “
1

2
rACDs.
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Combining these gives rOABs “ rOAEs.

Comment 1. The following is another way to prove AD ‖ BC and AC ‖ ED.

Let ` be the perpendicular bisector of AB. Since the midpoint of CD is the circumcentre of4ABE,
it must lie on `. Also, since =ABC “ 90˝, the midpoint of AC is on `. Therefore, we get AD ‖ ` ‖ BC
and similarly AC ‖ ED.

Solution 2 (Similar Triangles).

A

C

D

M

B

E

O

X

N

Let M be the midpoint of CD and X “ BCXED. As in Solution 1, M is the midpoint of AX
and ACXD is a parallelogram. Since AD ‖ BC and =ABC “ 90˝, we have =DAB “ 90˝.

Let N be the midpoint of BE. It is enough to show that =NAB “ =OAB. Since ABXE
is cyclic, we have

=ABE “ =AXE “ =XAC and =BEA “ =CXA.

Therefore, 4ABE „ 4CAX, and N corresponds to M under this similarity. In particular,
=NAB “ =ACM .

Also, we have
=OAB “ 90˝ ´=DAO “ =ACM “ =NAB.



Shortlisted problems – solutions 57

Solution 3 (Reflection).

A

C D

B

E

N

G

F

F 1

P

Let N be the midpoint of BE, and let F,G be the projections of C,D onto AD,AC respectively.
CGFD is cyclic so

=AGF “ =CDF “ =CDA “ 90˝ ´=OAC

giving AO K FG. Therefore it’s enough to show that AN K FG.

As in Solution 1, AD ‖ BC and AC ‖ ED so =EAG “ =FAB “ 90˝ and in fact AEDG
and AFCB are rectangles. From this we get

=AGE “ =DAG “ =FAC “ =BFA

so 4GAE „ 4FAB.

Let F 1 be the reflection of F in A, then 4F 1AB „ 4FAB „ 4GAE. Thus A is the centre
of the spiral symmetry taking F 1B Ñ GE.

Let P be the midpoint of F 1G then by the spiral similarity, we have4APN „ 4AGE which
implies =NAP “ 90˝. From A being the midpoint of FF 1 we have AP ‖ FG. Combining the
results gives AN K FG.
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G2. Let ABC be a triangle with AC ą BC. Let ω be the circumcircle of triangle ABC
and let r be the radius of ω. Point P lies on segment AC such that BC “ CP and point S is
the foot of the perpendicular from P to line AB. Let ray BP intersect ω again at D and let Q
lie on line SP such that PQ “ r and S, P,Q lie on the line in that order. Finally, let the line
perpendicular to CQ from A intersect the line perpendicular to DQ from B at E.

Prove that E lies on ω.
(Iran)

Solution 1 (Similar Triangles).

P

A
B

C

D
Q

E

S

O

First observe that

=DPA “ =BPC
CP“CB
“ =CBP “ =CBD “ =CAD “ =PAD

so DP “ DA. Thus there is a symmetry in the problem statement swapping pA,Dq Ø pB,Cq.

Let O be the centre of ω and let E be the reflection of P in CD which, by

=CED “ =DPC “ 180˝ ´=CPB
CP“CB
“ 180˝ ´=PBC “ 180˝ ´=DBC

lies on ω. We claim the two lines concur at E. By the symmetry noted above, it suffices to
prove that BEKDQ and then AEKCQ will follow by symmetry.

We have AO “ PQ, AD “ DP and

=DAO “ 90˝ ´=ABD
PQKAB
“ =DPQ.

Hence 4AOD – 4PQD. Thus

=QDB`=DBE “ =ODA`=DAE
DE“DA
“ =ODA`=AED “ p90˝ ´����

=AEDq`����
=AED “ 90˝

giving BEKDQ as required.
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Solution 2 (Second Circle).

P

A

B

C

D

Q

E

S

As in Solution 1, we prove that DA “ DP and note the symmetry in the problem statement
swapping pA,Dq Ø pB,Cq.

Let Γ be the circumcircle of 4PCD. Since DP “ DA and =ACD “ =PCD, the radius of
Γ is equal to that of ω. We have that

=DPQ “ =BPS “ 90˝ ´=ABD “ 90˝ ´=PCD.

This, combined with PQ being equal to the common circumradius of Γ and ω, means that Q
is the circumcentre of Γ.

Let the perpendiculars to CQ,DQ from A,B intersect at E then we have

=EAC “ 90˝ ´=ACQ
QC“QP
“ 90˝ ´=QPC “ 90˝ ´=SPA “ =CAB ùñ =EAB “ 2=PAB

=DBE “ 90˝ ´=QDP
QD“QP
“ 90˝ ´=DPQ “ 90˝ ´=BPS “ =ABD ùñ =ABE “ 2=ABP.

Combining these

=BEA “ 180˝ ´ 2 p=PAB `=ABP q “ 180˝ ´ 2=APD
DA“DP
“ =BDA

which gives that E lies on ω.

Comment 1. An alternative final angle chase is

=BEA “ 180˝ ´=CQD
Γ
“ 180˝ ´ 2 p180˝ ´=DPCq “ 180˝ ´ 2=APD

DA“DP
“ =PDA “ =BDA.
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Comment 2. An alternative formulation of the problem in terms of a cyclic quadrilateral is given
below:

Let ABCD be a cyclic quadrilateral with circumcircle ω and circumradius r. The diag-
onals AC and BD intersect at P . Suppose that AD “ DP . Let S be the foot of the
perpendicular from P to the line AB. Point Q lies on line SP such that PQ “ r and
S, P,Q lie on the line in that order. Let the line perpendicular to CQ from A intersect
the line perpendicular to DQ from B at E.

Prove that E lies on ω.
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G3. Let ABCD be a cyclic quadrilateral with =BAD ă =ADC. Let M be the midpoint
of the arc CD not containing A. Suppose there is a point P inside ABCD such that =ADB “
=CPD and =ADP “ =PCB.

Prove that lines AD,PM,BC are concurrent.
(Slovakia)

Solution 1. Let X and Y be the intersection points of AM and BM with PD and PC
respectively. Since ABCMD is cyclic and CM “MD, we have

=XAD “ =MAD “ =CBM “ =CBY .

Combining this with =ADX “ =Y CB, we get =DXA “ =BY C, and so =PXM “ =MY P .
Moreover, =Y PX “ =CPD “ =ADB “ =AMB. The quadrilateral MXPY therefore has
equal opposite angles and so is a parallelogram.

A B

T

C

D

S

R

M

P

Y

X

Let R and S be the intersection points of AM and BM with BC and AD respectively.
Due to AM ‖ PC and BM ‖ PD, we have =ASB “ =ADP “ =PCB “ =ARB and so
the quadrilateral ABRS is cyclic. We then have =SRB “ 180˝ ´ =BAS “ =DCB and so
SR ‖ CD. In triangles PCD and MRS, the corresponding sides are parallel so they are
homothetic meaning lines DS, PM , CR concur at the centre of this homothety.
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Solution 2. Let AD and BC meet at T . Denote by pa, pb, ma and mb the distances between
line TA and P , TB and P , TA and M and between TB and M respectively. Our goal is to
prove pa : pb “ ma : mb which is equivalent to the collinearity of T , P and M .

A B

T

C

D
µ

µ

M

P

µ

ν

ν

mb
ma

pa
pb

α

α

χ
χ

χ
χ

β

β

µ

Let =BAC “ =BDC “ α, =DBA “ =DCA “ β, =ADB “ =AMB “ =ACB “

=CPD “ µ, =ADP “ =PCB “ ν and =MAD “ =CAM “ =MBD “ =CBM “ χ.

From =ADP “ =PCB “ ν and =MAD “ =CBM “ χ we get

pa
pb
“
PD ¨ sin ν

PC ¨ sin ν
“
PD

PC
and

ma

mb

“
MA ¨ sinχ

MB ¨ sinχ
“
MA

MB
.

Hence pa : pb “ ma : mb is equivalent to PD : PC “MA : MB, and since =CPD “ =AMB “
µ, this means we have to show that triangles PDC and MAB are similar.

In triangle PDC we have

=PDC `=DCP “ 180˝ ´=CPD “ 180˝ ´ µ,

=PDC ´=DCP “ pα ` µ´ νq ´ pβ ` µ´ νq “ α ´ β.

Similarly, in triangle MAB we have

=BAM `=MBA “ 180˝ ´=AMB “ 180˝ ´ µ,

=BAM ´=MBA “ pα ` χq ´ pβ ` χq “ α ´ β.

Therefore, p=BAM,=MBAq and p=PDC,=DCP q satisfy the same system of linear equations.
The common solution is

=BAM “ =PDC “
180˝ ´ µ` α ´ β

2
and =MBA “ =DCP “

180˝ ´ µ´ α ` β

2
.

Hence triangles PDC and MAB have equal angles and so are similar. This completes the
proof.



Shortlisted problems – solutions 63

G4. Let ABC be an acute-angled triangle with AB ă AC. Denote its circumcircle by Ω
and denote the midpoint of arc CAB by S. Let the perpendicular from A to BC meet BS
and Ω at D and E ‰ A respectively. Let the line through D parallel to BC meet line BE at L
and denote the circumcircle of triangle BDL by ω. Let ω meet Ω again at P ‰ B.

Prove that the line tangent to ω at P , and line BS intersect on the internal bisector
of =BAC.

(Portugal)

Solution 1 (Triangles in Perspective). Let S 1 be the midpoint of arc BC of Ω, diametrically
opposite to S so SS 1 is a diameter in Ω and AS 1 is the angle bisector of =BAC. Let the tangent
of ω at P meet Ω again at Q ‰ P , then we have =SQS 1 “ 90˝.

We will show that triangles APD and S 1QS are similar and their corresponding sides are par-
allel. Then it will follow that the lines connecting the corresponding vertices, namely line AS 1,
that is the angle bisector of =BAC, line PQ, that is the tangent to ω at P , and DS are con-
current. Note that the sides AD and S 1S have opposite directions, so the three lines cannot be
parallel.

Ω S

A

E

S1

B

DL

P
ω

Q

C

First we show that AP K DP . Indeed, from cyclic quadrilaterals APBE and DPLB we
can see that

=PAD “ =PAE “ 180˝ ´=EBP “ =PBL “ =PDL “ 90˝ ´=ADP.

Then, in triangle APD we have =DPA “ 180˝ ´=PAD ´=ADP “ 90˝.

Now we can see that:

• Both lines ADE and SS 1 are perpendicular to BC, so AD ‖ S 1S.

• Line PQ is tangent to circle ω at P so =DPQ “ =DBP “ =SBP “ =SQP ; it follows
that PD ‖ QS.
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• Finally, since AP K PD ‖ QS K S 1Q, we have AP ‖ S 1Q as well.

Hence the corresponding sides of triangles APD and S 1QS are parallel completing the solution.
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Solution 2 (Pascal). Again, let S 1 be the midpoint of arc BC, diametrically opposite to S,
so AES1S is an isosceles trapezoid, and =S 1BS “ =S 1PS “ 90˝. Let lines AE and PS 1 meet
at T and let AP and S 1B meet at point M .

We will need that points L, P , S are collinear, and points T and M lie on circle ω.

• From =LPB “ =LDB “ 90˝ ´ =BDE “ 90˝ ´ =BSS1 “ =SS 1B “ 180˝ ´ =BPS we
get =LPB `=BPS “ 180˝, so L, P and S are indeed collinear.

• Since SS 1 is a diameter in Ω, lines LPS and PTS 1 are perpendicular. We also have LD ‖
BC K AE hence =LDT “ =LPT “ 90˝ and therefore T P ω.

• By =LPM “ =SPA “ =SEA “ =EAS1 “ =EBS 1 “ =LBM , point M is concyclic
with B,P, L so M P ω.

Ω
A

S

E

S1

B

DL

P
ω

X

C

TM

Now let X be the intersection of line BDS with the tangent of ω at P and apply Pas-
cal’s theorem to the degenerate cyclic hexagon PPMBDT . This gives points PP XBD “ X,
PM XDT “ A and MB X TP “ S 1 are collinear so X lies on line AS 1, that is the bisector
of =BAC.

Comment. It is easy to see that LMTD is a rectangle, but we did not need this information for the
solution.
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Solution 3 (Projections). Let A1 and S 1 be the points of Ω diametrically opposite to A
and S respectively. It is well-known that E and A1 are reflections with respect to SS 1 so AS 1
is the angle bisector of =EAA1. Define point T to be the intersection of AE and PS 1. As in
the previous two solutions, we have: =DPA “ 90˝ so PD passes through A1; points L, P, S are
collinear; and T P ω.

Let lines AS 1 and PDA1 meet at R. From the angles of triangles PRS 1 and PTE we get

=ARP “ =AS 1P `=S 1PA1 “ =AEP `=EPS1 “ =ATP

so points A,P, T,R are concyclic. Denote their circle by γ. Due to =RPA “ =DPA “ 90˝,
segment AR is a diameter in γ.

S1

SΩ

B

A

A1E

DL

P
ω

X

C

T R

γ

I
I

t

V

U

We claim that circles ω and γ are perpendicular. Let line LPS meet γ again at U ‰ P , and
consider triangles PLT and PTU . By =LPT “ =TPU “ 90˝ and

=PTL “ =PBL “ 180˝ ´=EBP “ =PAE “ =PAT “ =PUT ,

triangles PLT and PTU are similar. It follows that the spiral similarity that takes PLT
to PTU , maps ω to γ and the angle of this similarity is 90˝, so circles ω and γ are indeed
perpendicular.

Finally, let lines BDS and ARS 1 meet at X. We claim that X bisects AR, so point X is
the centre of γ and, as ω and γ are perpendicular, PX is tangent to ω.

Let t be the tangent of ω at D. From =pDT, tq “ =TPD “ =S 1PA1 “ =EAS1 it can be
seen that t ‖ AS 1. Let I be the common point at infinity of t and AS 1. Moreover, let lines LPS
and ADTE meet at V . By projecting line AS 1 to circle ω through D, then projecting ω to
line AE through L, finally projecting AE to Ω through P , we find

AX

RX
“ pA,R;X, Iq

D
“ pT, P ;B,Dq

L
“ pT, V ;E,Dq

P
“ pS 1, S;E,A1q “ ´1,

so X is the midpoint of AR.
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G5. Let ABC be an acute-angled triangle with circumcircle ω and circumcentre O. Points
D ‰ B and E ‰ C lie on ω such that BD K AC and CE K AB. Let CO meet AB at X, and
BO meet AC at Y .

Prove that the circumcircles of triangles BXD and CY E have an intersection on line AO.
(Malaysia)

Solution 1 (Reflections).
Note that AO “ OC implies the lines AO, XO are reflections of each other about the line

parallel to AC through O, which is the perpendicular bisector of BD. Call this line `.

Let P ‰ X be the second intersection of circle dBXD with line XO, and let Z be the
intersection of circle dBXD with line AO furthest from A.

Consider a reflection across `. This maps B to D, AO to XO, and circle dBXD to itself so
the transformation must map P , the intersection of XO and circle dBXD, to the intersection
of AO and dBXD furthest from A i.e. Z. Thus we have

=OZB “ =DPO “ =DPX “ =DBX “ 90˝ ´=BAC “ =OCB

which implies BOCZ is cyclic.

Therefore the second intersection of circle dBOC with line AO lies on circle dBXD.
Similarly, Z lies on circle dCY E so the two circles have common point Z on AO.

A

B

C

O

D

X

Z

P

`
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Solution 2 (Similar Triangles).

A

B

C

O

D

X

Z

H

B1

Let B1 be the reflection of B in AC and let AO intersect circle dOBC again at Z ‰ O.
Observe that

=B1CA`=ACZ “ 2=ACB`=BCZ “ 2=ACB`=BOZ “ 2=ACB`p180˝ ´=AOBq “ 180˝

so Z,C,B1 are collinear.

Claim. Triangles ZXA and ZDB1 are similar.
Proof. We have

=XAZ “ =BAO “ 90˝ ´=ACB “ =CBB1 “ =BB1C “ =DB1Z.

So it suffices to prove that B1Z
B1D

“ AZ
AX

. To do this, first observe

=B1ZA “ =CZO “ =CBO “ =XCB and =AB1Z “ =AB1C “ =CBA “ =CBX.

Hence triangles ZAB1 and CXB are similar so

B1Z

AZ
“
BC

CX
.

Note that the orthocentre H of triangle ABC is the reflection of D in AC. Applying sine rule
to triangles ACX and BHC gives

AX

CX
“

sin =ACX

sin =XAC
“

sin p90˝ ´=CBAq

sin =BAC
“

sin p90˝ ´=CBAq

sin p180˝ ´=BACq
“

sin =HCB

sin =BHC
“
BH

BC
“
B1D

BC
.
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Multiplying the two results gives

B1Z

AZ
¨
AX

CX
“

�
��BC

CX
¨
B1D

���BC
“
B1D

CX

which implies B1Z
B1D

“ AZ
AX

, as required. l

From the claim

=BDZ “ 180˝ ´=ZDB1 “ 180˝ ´=ZXA “ =BXZ

which means Z lies on circle dBXD. Similarly, Z lies on circle dCY E completing the proof.

Solution 3 (Inversion at A).

A

B

C

O

D
X

H˚

H

D˚

X˚

K

L

Consider the composition of the inversion at A with radius
?
AB ˆ AC and reflection in the

angle bisector of =BAC, and use P ˚ to denote the image of a point P under this transformation.
Let H be the orthocentre of triangle ABC and let K, L be the feet of the perpendicular from
A, B to BC, CA respectively. Denote A “ =BAC, B “ =CBA and C “ =ACB.

We have
=D˚AK “ =OAD “ 90˝ ´=DBA “ 90˝ ´ p90˝ ´ Aq “ A.

Hence, using right-angled 4AKD˚
#

D˚K “ AK tanA “ 2R sinB sinC tanA

HK “ 2R cosB cosC
ùñ

D˚K

HK
“ tanA tanB tanC

We also have
=AX˚B “ =ACX “ =ACO “ 90˝ ´B.
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Hence, using right-angled 4BLX˚

#

X˚L “ BL tanB “ 2R sinA sinC tanB

HL “ 2R cosA cosC
ùñ

X˚L

HL
“ tanA tanB tanC.

Thus D˚K
HK

“ X˚L
HL

and as =HLX˚ “ =HKD˚ “ 90˝, this means that triangle D˚HK and
X˚HL are similar and in particular

=CD˚H “ =KD˚H “ =LX˚H “ =CX˚H

so D˚HCX˚ is cyclic.
Inverting back, this gives DH˚BX cyclic so H˚ lies on circle dBXD. Similarly, H˚ lies on

circle dCY E.
Since AO and AH are isogonal in =BAC, H˚ lies on line AO completing the proof.

Solution 4 (Inversion at O). Let F be the point on ω such that AF is a diameter of ω,
and J be the intersection of DF with CO.

Consider the inversion with respect to ω and use P 1 to denote the image of a point P .

A

B

C

O

D

X

F

K

J

X 1

X 1 lies on line CO and we have

=BX 1J “ =BX 1O “ =OBX “ =OBA “ =BAO “ =BAF “ =BDF “ =BDJ

so BX 1DJ is cyclic.
Let K be the intersection of AF with BC. Then we have OB “ OD and

=KBO “ 90˝ ´ A “ =DBA “ =DFA “ =DFO “ =ODJ

=BOK “ 2=OBA “ 2=CBD “ =COD “ =JOD

Hence triangle BOK and DOJ are congruent. In particular BK “ DJ and

=KBD “ =KBO `=OBD “ =ODJ `=BDO “ =BDJ.

Thus BDJK is an isosceles trapezoid and BX 1DJK is cyclic.
Inverting back this gives that BXDK 1 is cyclic. Similarly CY EK 1 is cyclic. Since K lies

on AO, K 1 also lies on AO completing the proof.
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G6. Let ABC be an acute-angled triangle with circumcircle ω. A circle Γ is internally
tangent to ω at A and also tangent to BC at D. Let AB and AC intersect Γ at P and Q
respectively. Let M and N be points on line BC such that B is the midpoint of DM and
C is the midpoint of DN . Lines MP and NQ meet at K and intersect Γ again at I and J
respectively. The ray KA meets the circumcircle of triangle IJK at X ‰ K.

Prove that =BXP “ =CXQ.
(United Kingdom)

Solution 1 (Similar Triangles).

A

P Q

DB CM N

J K
I

X

Γ

Let MP and NQ intersect AD at K1 and K2 respectively. By applying Menelaus’ theorem
to triangle ABD and line MPK1, we have

AK1

K1D
“
AP

PB
¨
BM

MD
“

AP

2PB

and similarly AK2

K2D
“

AQ
2QC

. A homothety at A takes Γ Ñ ω and D to the midpoint of arc BC
not containing A, so PQ ‖ BC and AD bisects =BAC. Thus

AK1

K1D
“

AP

2PB
“

AQ

2QC
“
AK2

K2D

which implies K1 ” K2, and K lies on AD.

Then we obtain

=JXD “ =JXK “ =JIK “ =JIP “ =JQP “ =JND

where the last equality follows from PQ ‖ BC. This shows JXND is cyclic and hence

=DXN “ =DJN “ =DJQ “ =DAQ “ =DAC
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which shows AC ‖ XN . As C is the midpoint of DN , A is the midpoint of XD.

Now observe that =ADP “ =AQP “ =ACB and =PAD “ =DAC “ =A
2

so triangle
APD and ADC are similar. Therefore we have

CD

DP
“
AD

AP
“
XA

AP

and also have
=CDP “ 180˝ ´=PDB “ 180˝ ´=PAD “ =XAP.

Combining the two results gives triangles PDC and PAX are similar, which shows P is the
centre of spiral similarity taking CD Ñ XA. Hence also triangles PXC and PAD are similar
which shows =PXC “ =PAD “ =A

2
. This gives

=BXP “ =BXC ´=PXC “ =BXC ´
=A

2

which is symmetric in B, C giving the result.

Solution 2 (Inversion). As in the first solution we show that K lies on AD. From C being
the midpoint of DN and BC ‖ PQ we get

´1 “ pC,8BC ;N,Dq
Q
“ pA,PQX AD;K,Dq

Q
“ pA,P ; J,Dq .

Similarly we get pA,Q; I,Dq “ ´1.

A

P Q

D

A˚

B˚ C˚

J˚ I˚

X˚

K˚

Now invert about D with radius DP “ DQ denoting the inverse of a point Z by Z˚. Since
dAPQ and line PQ swap we have A˚ “ PQX AD. Thus we have:

´1 “ pA,A˚;K,Dq “ pA,P ; J,Dq “ pA,Q; I,Dq

As inversion preserves cross ratio and D inverts to the point at infinity, it follows I˚, J˚, K˚

are the midpoints of A˚Q,A˚P,A˚A respectively. We know XIKJ cyclic so X is the second
intersection of circle pI˚J˚K˚q with AD. Homothety of factor 2 at A˚ takes circle pI˚J˚K˚q

to circle dAPQ ” Γ hence in fact X˚ is the midpoint of A˚D.
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Then we have
=PDB “ =BAD “ =DAC “ =DC˚A˚

so DP ‖ C˚A˚. Also A˚ lies on PQ so as PQ ‖ BC we get A˚P ‖ DC˚, which gives PA˚C˚D
is a parallelogram. Similarly QA˚B˚D is also a parallelogram. As X˚ is the midpoint of A˚D
this shows that X˚ lies on lines B˚Q and C˚P .

By applying standard properties of angles under inversion, we have

=BXP ´=CXQ “ p=BXD ´=PXDq ´ p=DXC ´=DXQq

“ p=DB˚X˚
´=DPX˚

q ´ p=X˚C˚D ´=X˚QDq

“ p=DB˚X˚
`=X˚PQq ´ p=X˚C˚D `=PQX˚

q

(as =DPQ “ =PQD)
“ p=DB˚Q´=PQB˚q
loooooooooooomoooooooooooon

“0

´p=PC˚D ´=C˚PQq
loooooooooooomoooooooooooon

“0

“ 0 (as PQ ‖ BC)

which gives the result.
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G7. Let ABC be an acute, scalene triangle with orthocentre H. Let `a be the line through
the reflection of B with respect to CH and the reflection of C with respect to BH. Lines `b
and `c are defined similarly. Suppose lines `a, `b, and `c determine a triangle T .

Prove that the orthocentre of T , the circumcentre of T and H are collinear.
(Ukraine)

Solution 1.

A

B C

Ac

Ab

Bc

Ba
Ca

Cb

B1

C1

A1

H

H1

O1

`a

`b

`c

We write 4P1P2P3
`
„ 4Q1Q2Q3 (resp. 4P1P2P3

´
„ 4Q1Q2Q3) to indicate that two trian-

gles are directly (resp. oppositely) similar. We use directed angles throughout denoted with
>.

Denote by Ab, Ac the reflections of A in BH and CH respectively. Bc, Ba and Ca, Cb
are defined similarly. By definition, `a “ BcCb, `b “ CaAc, `c “ AbBa. Let A1 “ `b X `c,
B1 “ `cX`a, C1 “ `aX`b and let O1, H1 be the orthocentre and circumcentre of T ” 4A1B1C1

respectively.

Claim 1. 4AAbAc
´
„ 4ABC.

Proof. Let P “ BHXAC, Q “ CHXAB, then it is well known that 4APQ ´
„ 4ABC. By the

dilation with factor 2 centred at A, 4APQ is sent to 4AAbAc, so we have 4AAbAc
´
„ 4ABC.

l
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Claim 2. 4AAbAc
`
„ 4ABaCa and A1 lies on the circumcircle of 4AAbAc which is centred at

H.
Proof. Since Ba, Ca are reflections of B, C in AH, we have 4ABaCa

´
„ 4ABC. Combining this

with Claim 1, we have 4AAbAc
`
„ 4ABaCa, where A is the centre of this similarity. Therefore,

>AcA1Ab “ >AcAAb meaning A1 lies on dAAbAc. By symmetry, HAb “ HA “ HAc, so H is
centre of this circle. l

Claim 3. 4A1B1C1
´
„ 4ABC.

Proof. From Claim 2 we have

>C1A1B1 “ >AcA1Ab
Claim 2
“ >AcAAb “ ´>CAB

and similarly >A1B1C1 “ ´>ABC, >B1C1A1 “ ´>BCA, which imply 4A1B1C1
´
„ 4ABC.

l

Denote the ratio of similitude of 4A1B1C1 and 4ABC by λ (“ B1C1

BC
), then

λ “
H1A1

HA
“
H1B1

HB
“
H1C1

HC
.

Since HA “ HA1 and similarly HB “ HB1, HC “ HC1 from Claim 2, we get

λ “
H1A1

HA1

“
H1B1

HB1

“
H1C1

HC1

.

Therefore, the circle A1B1C1 is the Apollonian circle of the segment HH1 with ratio λ so the
line HH1 passes through O1.
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Solution 2. We use the same notation Ab, Ac, Bc, Ba, Ca, Cb and A1, B1, C1, O1, H1 as in
Solution 1, and also show Claim 1, Claim 2 and Claim 3 in the same way.

Let O be the circumcentre of 4ABC and A2 be the reflection of A1 in AH. As dAAbAc is
centred at H, A2 also lies on this circle.

By Claim 2, >BaA1Ca “ >AbAAc “ >BaACa, so A1 lies on dABaCa. Reflecting this in
AH gives that A2 lies on dABC. We now have circles centred at O and H passing through
A and A2 so these points are symmetric with respect to OH. Define B2 and C2 similarly then
4ABC and 4A2B2C2 are symmetric with respect to OH and also dABC “ dA2B2C2.

A

B
C

Ac

Ab

Bc

Ba
Ca

Cb

B1

C1

A1

H

H1

O1

T

A2

C2

B2

O

Claim 4. A1A2, B1B2 and C1C2 have an intersection on dABC which we denote by T .

Proof. Let T “ A1A2 XB1B2. Since A1A2 ‖ BC and B1B2 ‖ AC, we have

>A2TB2 “ >BCA “ ´>B2C2A2 “ >A2C2B2.

So T lies on dA2B2C2 “ dABC. Similarly the intersection of A1A2 and C1C2 lies on dABC,
so C1C2 also passes through T . l

Claim 5. T also lies ondA1B1C1 and T corresponds to T itself under the similarity4A1B1C1
´
„

4ABC.
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Proof. We know 4A1B1C1
´
„ 4ABC by Claim 3. We also have

>B1TC1 “ >B2TC2 “ >B2A2C2 “ ´>BAC
Claim 3
“ >B1A1C1,

so T lies on dA1B1C1. The remaining part is concluded by the following angle chase:

>A1B1T “ >A1B1B2
B1B2‖AC
“ >A1AbA “ >A1A2A “ ´>AA2T “ ´>ABT. l

Claim 6. The circumradius of 4A1B1C1 is equal to HO.
Proof. Two circles centred at H intersect `c at A1, Ab and B1, Ba, so A1Ab and B1Ba have the
same midpoint and thus A1B1 “ AbBa. Consider the spiral symmetry 4AAbAc

`
„ 4ABaCa.

This takes H, the circumcentre of 4AAbAc, to the circumcentre of 4ABaCa, denoted by Oa,
which is symmetric to O in AH. Hence 4AAbBa

`
„ 4AHOa, so

AAb
BaAb

“
AH

HOa

“
AH

HO
ùñ

AH

AAb
“

HO

AbBa

.

Also since 4A1O1B1
`
„ 4AHAb (both of them are ´

„ 4AOB), we have

A1O1

A1B1

“
AH

AAb
“

HO

AbBa

“
HO

A1B1

ùñ A1O1 “ HO

as desired. l

Since

> pTA1, TO1q
Claim 5
“ > pTO, TAq “ 90˝ `> pTA1, AA2q

OHKAA2
“ > pTA1, OHq ,

we have O1T ‖ HO. Combined with O1T “ HO, O1TOH is a parallelogram. Therefore, using
this and Claim 5, we have >H1O1T “ >TOH “ >HO1T , which imply that O1, H1 and H are
collinear as desired.
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G8. Let ABC be an equilateral triangle. Points A1, B1, C1 lie inside triangle ABC such
that triangle A1B1C1 is scalene, BA1 “ A1C, CB1 “ B1A, AC1 “ C1B and

=BA1C `=CB1A`=AC1B “ 480˝.

Lines BC1 and CB1 intersect at A2; lines CA1 and AC1 intersect at B2; and lines AB1 and
BA1 intersect at C2.

Prove that the circumcircles of triangles AA1A2, BB1B2, CC1C2 have two common points.
(U.S.A.)

Solution. Let δA, δB, δC be the circumcircles of 4AA1A2, 4BB1B2, 4CC1C2. The general
strategy of the solution is to find two different points having equal power with respect to
δA, δB, δC .
Claim. A1 is the circumcentre of A2BC and cyclic variations.
Proof. Since A1 lies on the perpendicular bisector of BC and inside 4BA2C, it suffices to prove
=BA1C “ 2=BA2C. This follows from

=BA2C “ =A2BA`=BAC `=ACA2

“
1

2
pp180˝ ´=AC1Bq ` p180˝ ´=CB1Aqq ` 60˝

“ 240˝ ´
1

2
p480˝ ´=BA1Cq

“
1

2
=BA1C

l

A

B
C

A1

A2

C1
B1

B2 C2

X

The circumcentres above give

=B1B2C1 “ =B1B2A “ =B2AB1 “ =C1AC2 “ =AC2C1 “ =B1C2C1

and so B1C1B2C2 is cyclic. Likewise C1A1C2A2 and A1B1A2B2 are cyclic. Note that hexagon
A1B2C1A2B1C2 is not cyclic since

=C2A1B2 `=B2C1A2 `=A2B1C2 “ 480˝ ‰ 360˝.
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Thus we can apply radical axis theorem to the three circles to show that A1A2, B1B2, C1, C2

concur at a point X and this point has equal power with respect to δA, δB, δC .

Let the circumcircle of 4A2BC meet δA at A3 ‰ A2. Define B3 and C3 similarly.
Claim. BCB3C3 cyclic.
Proof. Using directed angles

>BC3C “ >BC3C2 `>C2C3C

“ >BAC2 `>C2C1C

“ 90˝ `>pC1C,AC2q `>C2C1C (CC1KAB)
“ 90˝ `>C1C2B1.

Similarly >CB3B “ 90˝ `>B1B2C1. Hence, using B1C1B2C2 cyclic

>BB3C “ 90˝ `>C1B2B1 “ 90˝ `>C1C2B1 “ >BC3C

as required. l

A

B
C

C1

B1

B2 C2

B3
C3

Similarly CAC3A3 and ABA3B3 are cyclic. AC3BA3CB3 is not cyclic because then AB2CB3

cyclic would mean B2 lies on dABC which is impossible since B2 lies inside 4ABC. Thus we
can apply radical axis theorem to the three circles to get AA3, BB3, CC3 concur at a point Y
which has equal power with respect to δA, δB, δC .

We now make some technical observations before finishing.

• Let O be the centre of 4ABC. We have that

=BA1C “ 480˝ ´=CB1A´=AC1B ą 480˝ ´ 180˝ ´ 180˝ “ 120˝.

so A1 lies inside 4BOC. We have similar results for B1, C1 and thus 4BA1C, 4CB1A,
4AC1B have disjoint interiors. It follows that A1B2C1A2B1C2 is a convex hexagon thus
X lies on segment A1A2 and therefore is inside δA.
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• Since A1 is the centre of A2BC we have that A1A2 “ A1A3 so, from cyclic quadrilateral
AA2A1A3 we get that lines AA2 and AA3 ” AY are reflections in line AA1. As X lies on
segment A1A2, the only way X ” Y is if A1 and A2 both lie on the perpendicular bisector
of BC. But this forces B1 and C1 to also be reflections in this line meaning A1B1 “ A1C1

contradicting the scalene condition.

Summarising, we have distinct points X, Y with equal power with respect to δA, δB, δC thus
these circles have a common radical axis. As X lies inside δA (and similarly δB, δC), this radical
axis intersects the circles at two points and so δA, δB, δC have two points in common.

Comment. An alternative construction for Y comes by observing that

sin =BAA2

sin =A2AC
“

A2B
��AA2

sin =A2BA
A2C
��AA2

sin =ACA2

“
A2B

A2C
¨

sin =C1BA

sin =ACB1
“

sin =B1CB

sin =CBC1
¨

sin =C1BA

sin =ACB1

and hence
sin =BAA2

sin =A2AC
¨

sin =CBB2

sin =B2BA
¨

sin =ACC2

sin =C2CB
“ 1

so by Ceva’s theorem, AA2, BB2, CC2 concur and thus we can construct the isogonal conjugate of this
point of concurrency which turns out to be Y .
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Number Theory

N1. Determine all positive, composite integers n that satisfy the following property: if
the positive divisors of n are 1 “ d1 ă d2 ă ¨ ¨ ¨ ă dk “ n, then di divides di`1 ` di`2 for every
1 ď i ď k ´ 2.

(Colombia)

Answer: n “ pr is a prime power for some r ě 2.

Solution 1. It is easy to see that such an n “ pr with r ě 2 satisfies the condition as di “ pi´1

with 1 ě i ě k “ r ` 1 and clearly
pi´1

| pi ` pi`1.

Now, let us suppose that there is a positive integer n that satisfies the divisibility condition
of the problem and that has two different prime divisors p and q. Without lost of generality, we
assume p ă q and that they are the two smallest prime divisors of n. Then there is a positive
integer j such that

d1 “ 1, d2 “ p, . . . , dj “ pj´1, dj`1 “ pj, dj`2 “ q,

and it follows that

dk´j´1 “
n

q
, dk´j “

n

pj
, dk´j`1 “

n

pj´1
, . . . , dk´1 “

n

p
, dk “ n.

Thus
dk´j´1 “

n

q
| dk´j ` dk´j`1 “

n

pj
`

n

pj´1
“

n

pj
pp` 1q. (1)

This gives pj | qpp` 1q, which is a contradiction since gcdpp, p` 1q “ 1 and p ‰ q.

Solution 2. Since didk`1´i “ n, we have the equivalence:

dk´i´1 | dk´i ` dk´i`1 ðñ
n

di`2

|
n

di`1

`
n

di
.

We multiply both sides by didi`1di`2 and cancel the n’s to get

didi`1 | didi`2 ` di`1di`2.

Hence,
di | di`1di`2. (2)

Moreover, by the condition of the problem,

di | di`1pdi`1 ` di`2q “ d2
i`1 ` di`1di`2.

Combining this with (2) we get that di | d2
i`1 for all 1 ď i ď k ´ 2.

Let d2 “ p be the smallest prime divisor of n. By induction on i we prove that p | di for
all 2 ď i ď k ´ 1. The base case d2 “ p is obvious. Let us suppose that p | dj for some
2 ď j ď k ´ 2. Then we have that

p | dj | d
2
j`1 ùñ p | dj`1

as p is prime, which completes the induction. This implies that n has to be a prime power, as
otherwise there would be another prime q that divides n and we would get that p | q which is
obviously false.

We finally check that the powers of p satisfy the condition in the statement of the problem
as in Solution 1.
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Solution 3. We start by proving the following claim:
Claim. di | di`1 for every 1 ď i ď k ´ 1.
Proof. We prove the Claim by induction on i; it is trivial for i “ 1 because d1 “ 1. Suppose
that 2 ď i ď k ´ 1 and the Claim is true for i ´ 1, i.e. di´1 | di. By the induction hypothesis
and the problem condition, di´1 | di and di´1 | di ` di`1, so di´1 | di`1.

Now consider the divisors dk´i “
n

di`1

, dk´i`1 “
n

di
, dk´i`2 “

n

di´1

. By the problem

condition,

dk´i`1 ` dk´i`2

dk´i
“

n

di
`

n

di´1
n

di`1

“
di`1

di
`
di`1

di´1

is an integer. We conclude that
di`1

di
is an integer, so di | di`1. l

By the Claim, n cannot have two different prime divisors because the smallest one would
divide the other one. Hence, n must be a power of a prime, and powers of primes satisfy the
condition of the problem as we saw in Solution 1.

Solution 4. We present here a more technical way of finishing Solution 1 after obtaining (1).
We let vppmq denote the p-adic valuation of m. Notice that vppn{qq “ vppnq as gcdpp, qq “ 1
and that

vp

ˆ

n

pj
pp` 1q

˙

“ vppnq ´ j

as gcdpp, p` 1q “ 1. But (1) implies

vppnq “ vppn{qq ď vp

ˆ

n

pj
pp` 1q

˙

“ vppnq ´ j

which is a contradiction. Thus n has only one prime divisor as desired.
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N2. Determine all pairs pa, pq of positive integers with p prime such that pa`a4 is a perfect
square.

(Bangladesh)

Answer: pa, pq “ p1, 3q, p2, 3q, p6, 3q, p9, 3q are all the possible solutions.

Solution. Let pa ` a4 “ b2 for some positive integer b. Then we have

pa “ b2
´ a4

“ pb` a2
qpb´ a2

q.

Hence both b` a2 and b´ a2 are powers of p.
Let b´ a2 “ px for some integer x. Then b` a2 “ pa´x and a´ x ą x. Therefore, we have

2a2
“ pb` a2

q ´ pb´ a2
q “ pa´x ´ px “ pxppa´2x

´ 1q. (1)

We shall consider two cases according to whether p “ 2 or p ‰ 2. We let vppmq denote the
p-adic valuation of m.

Case 1 (p “ 2): In this case,

a2
“ 2x´1

p2a´2x
´ 1q “ 22v2paqp2a´2x

´ 1q,

where the first equality comes from (1) and the second one from gcdp2, 2a´2x ´ 1q “ 1. So,
2a´2x ´ 1 is a square.

If v2paq ą 0, then 2a´2x is also a square. So, 2a´2x´1 “ 0, and a “ 0 which is a contradiction.
If v2paq “ 0, then x “ 1, and a2 “ 2a´2 ´ 1. If a ě 4, the right hand side is congruent

to 3 modulo 4, thus cannot be a square. It is easy to see that a “ 1, 2, 3 do not satisfy this
condition.

Therefore, we do not get any solutions in this case.

Case 2 (p ‰ 2): In this case, we have 2vppaq “ x. Let m “ vppaq. Then we have a2 “ p2m ¨ n2

for some integer n ě 1. So, 2n2 “ pa´2x ´ 1 “ pp
m¨n´4m ´ 1.

We consider two subcases.

Subcase 2-1 (p ě 5): By induction, one can easily prove that pm ě 5m ą 4m for all m. Then
we have

2n2
` 1 “ pp

m¨n´4m
ą pp

m¨n´pm
ě 55m¨pn´1q

ě 5n´1.

But, by induction, one can easily prove that 5n´1 ą 2n2 ` 1 for all n ě 3. Therefore, we
conclude that n “ 1 or 2. If n “ 1 or 2, then p “ 3, which is a contradiction. So there
are no solutions in this subcase.

Subcase 2-2 (p “ 3): Then we have 2n2 ` 1 “ 33m¨n´4m. If m ě 2, one can easily prove by
induction that 3m ą 4m. Then we have

2n2
` 1 “ 33m¨n´4m

ą 33m¨n´3m
“ 33m¨pn´1q

ě 39pn´1q.

Again, by induction, one can easily prove that 39pn´1q ą 2n2 ` 1 for all n ě 2. Therefore,
we conclude that n “ 1. Then we have 2¨12`1 “ 33m´4m hence 3 “ 33m´4m. Consequently,
we have 3m ´ 4m “ 1. The only solution of this equation is m “ 2 in which case we have
a “ 3m ¨ n “ 32 ¨ 1 “ 9.

If m ď 1, then there are two possible cases: m “ 0 or m “ 1.
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• If m “ 1, then we have 2n2 ` 1 “ 33n´4. Again, by induction, one can easily prove
that 33n´4 ą 2n2 ` 1 for all n ě 3. By checking n “ 1, 2, we only get n “ 2 as a
solution. This gives a “ 3m ¨ n “ 31 ¨ 2 “ 6.

• If m “ 0, then we have 2n2 ` 1 “ 3n. By induction, one can easily prove that
3n ą 2n2 ` 1 for all n ě 3. By checking n “ 1, 2, we find the solutions a “ 30 ¨ 1 “ 1
and a “ 30 ¨ 2 “ 2.

Therefore, pa, pq “ p1, 3q, p2, 3q, p6, 3q, p9, 3q are all the possible solutions.
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N3. For positive integers n and k ě 2 define Ekpnq as the greatest exponent r such that
kr divides n!. Prove that there are infinitely many n such that E10pnq ą E9pnq and infinitely
many m such that E10pmq ă E9pmq.

(Brazil)

Solution 1. We let vppmq denote the p-adic valuation of m. By Legendre’s Formula we
know, for p prime, that vppn!q “ tn{pu ` tn{p2u ` ¨ ¨ ¨ . We can see that E9pnq “ t

v3pn!q
2

u. Since
v5pn!q ď v2pn!q and E10pnq “ minpv5pn!q, v2pn!qq, we have E10pnq “ v5pn!q.

Let l be a positive integer. Set n “ 52l´1. Then we have

E10pnq “ v5pn!q “ 52l´2
` 52l´3

` ¨ ¨ ¨ ` 5` 1 “
52l´1 ´ 1

4
“
n´ 1

4
.

Since n “ 52l´1 ” 2 pmod 3q, we have
X

n
3

\

“ n´2
3

and it implying

v3pn!q “
Yn

3

]

`

Y n

32

]

`

Y n

33

]

` ¨ ¨ ¨ ă
n´ 2

3
`
n

32
`
n

33
` ¨ ¨ ¨ “

n

2
´

2

3
.

From this we obtain

E9pnq “

Z

v3pn!q

2

^

ď
v3pn!q

2
ď
n

4
´

1

3
ă
n

4
´

1

4
“ E10pnq.

In a similar way, we set now m “ 34l´2. Then we have

v3pm!q “ 34l´3
` 34l´4

` ¨ ¨ ¨ ` 3` 1 “
34l´2 ´ 1

2
“
m´ 1

2
.

Note that m “ 34l´2 ” 1 pmod 4q and hence E9pmq “ t
v3pm!q

2
u “ tm´1

4
u “ m´1

4
. We also have

m “ 34l´2 ” 4 pmod 5q implying tm
5

u “ m´4
5

. Therefore we obtain

E10pmq “ v5pm!q “
Ym

5

]

`

Ym

52

]

` ¨ ¨ ¨ ă
m´ 4

5
`
m

52
` ¨ ¨ ¨ “

m

4
´

4

5
ă
m

4
´

1

4
“ E9pmq.

We can take infinitely many n “ 52l´1 and m “ 34l´2 completing the proof.

Solution 2. In the setting of Solution 1, we consider two subsequences:
First, we take n “ 53b´1 with b ě 2. Because 5 is not a square modulo 3 and ϕp3bq “ 2 ¨3b´1,

we have n ” ´1 pmod 3bq. Hence,

v3pn!q “
Yn

3

]

`

Y n

32

]

` ¨ ¨ ¨ ă
n´ 2

3
`
n´ 8

9
` ¨ ¨ ¨ `

n´ p3b ´ 1q

3b
`

n

3b`1
` ¨ ¨ ¨ ă

n

2
´ b`

1

2
,

and E10pnq “
n´1

4
ą n`1´2b

4
ą E9pnq.

In the same way, for m “ 32¨5b´1
” ´1 pmod 5bq with b ě 2,

E10pmq “
Ym

5

]

`

Ym

52

]

` ¨ ¨ ¨ ă
m´ 4

5
`
m´ 24

25
` ¨ ¨ ¨ `

m´ p5b ´ 1q

5b
`

m

5b`1
` ¨ ¨ ¨ ă

m

4
´ b`

1

4
,

and E9pmq “
m´1

4
ą E10pmq holds.

Comment. From Solution 2 we can see that for any positive real B, there exist infinitely many positive
integers m and n such that E10pnq ´ E9pnq ą B and E10pmq ´ E9pmq ă ´B.
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N4. Let a1, a2, . . . , an, b1, b2, . . . , bn be 2n positive integers such that the n` 1 products

a1a2a3 ¨ ¨ ¨ an,
b1a2a3 ¨ ¨ ¨ an,
b1b2a3 ¨ ¨ ¨ an,

...
b1b2b3 ¨ ¨ ¨ bn

form a strictly increasing arithmetic progression in that order. Determine the smallest positive
integer that could be the common difference of such an arithmetic progression.

(Canada)

Answer: The smallest common difference is n!.

Solution 1. The condition in the problem is equivalent to

D “ pb1 ´ a1qa2a3 ¨ ¨ ¨ an “ b1pb2 ´ a2qa3a4 ¨ ¨ ¨ an “ ¨ ¨ ¨ “ b1b2 ¨ ¨ ¨ bn´1pbn ´ anq,

where D is the common difference. Since the progression is strictly increasing, D ą 0, hence
bi ą ai for every 1 ď i ď n. Individually, these equalities simplify to

pbi ´ aiqai`1 “ bipbi`1 ´ ai`1q for every 1 ď i ď n´ 1. (1)

If gi :“ gcdpai, biq ą 1 for some 1 ď i ď n, then we can replace ai with ai
gi

and bi with bi
gi

to
get a smaller common difference. Hence we may assume gcdpai, biq “ 1 for every 1 ď i ď n.

Then, we have gcdpbi´ai, biq “ gcdpai, biq “ 1 and gcdpai`1, bi`1´ai`1q “ gcdpai`1, bi`1q “ 1
for every 1 ď i ď n´ 1. The equality (1) implies ai`1 “ bi and bi ´ ai “ bi`1 ´ ai`1. Thus,

a1, b1 “ a2, b2 “ a3, . . . , bn´1 “ an, bn

is an arithmetic progression with positive common difference. Since a1 ě 1, we have ai ě i for
every 1 ď i ď n, so

D “ pb1 ´ a1qa2a3 ¨ ¨ ¨ an ě 1 ¨ 2 ¨ 3 ¨ ¨ ¨n “ n!

Equality is achieved when bi ´ ai “ 1 for 1 ď i ď n and a1 “ 1, i.e. ai “ i and bi “ i ` 1
for every 1 ď i ď n. Indeed, it is straightforward to check that these integers produce an
arithmetic progression with common difference n!.

Solution 2 (Variant of Solution 1). Similarly to Solution 1, we may assume gcdpai, biq “ 1
for every 1 ď i ď n.

Denote by p1, p2, . . . , pn`1 the sequence obtained as the product in the problem statement.
Then we have pi`1

pi
“

bi
ai
ą 1, so bi ą ai. Since p1, p2, . . . , pn`1 is an arithmetic progression, we

have pi`2 “ 2pi`1 ´ pi hence

2´
ai
bi
“

2bi ´ ai
bi

“
2pi`1 ´ pi
pi`1

“
pi`2

pi`1

“
bi`1

ai`1

.

But since the fractions on the left-hand side and the right-hand side are both irreducible, we
conclude that bi “ ai`1, so 2´ ai

ai`1
“

ai`2

ai`1
. Then we have ai ` ai`2 “ 2ai`1, which means that

a1, a2, . . . , an is an arithmetic progression with positive common difference.
We conclude as in Solution 1.
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Solution 3. (The following solution is purely algebraic: it does not involve considerations on
greatest common divisors.)

We retake Solution 1 from (1). Then we have

ai`1

bi`1 ´ ai`1

“
bi

bi ´ ai
“ 1`

ai
bi ´ ai

.

So, for 1 ď i ď n,
ai

bi ´ ai
“

a1

b1 ´ a1

` pi´ 1q.

Then
ai ě

ai
bi ´ ai

“
a1

b1 ´ a1

` pi´ 1q ą i´ 1.

since bi ´ ai ě 1 and b1 ´ a1 ą 0. As ai is an integer, we have ai ě i.
We again conclude as in Solution 1.



88 Chiba, Japan, 2nd–13th July 2023

N5. Let a1 ă a2 ă a3 ă ¨ ¨ ¨ be positive integers such that ak`1 divides 2pa1 ` a2 ` ¨ ¨ ¨ ` akq
for every k ě 1. Suppose that for infinitely many primes p, there exists k such that p divides
ak. Prove that for every positive integer n, there exists k such that n divides ak.

(Netherlands)

Solution. For every k ě 2 define the quotient bk “ 2pa1 ` ¨ ¨ ¨ ` ak´1q{ak, which must be a
positive integer. We first prove the following properties of the sequence pbkq:
Claim 1. We have bk`1 ď bk ` 1 for all k ě 2.
Proof. By subtracting bkak “ 2pa1 ` ¨ ¨ ¨ ` ak´1q from bk`1ak`1 “ 2pa1 ` ¨ ¨ ¨ ` akq, we find that
bk`1ak`1 “ bkak ` 2ak “ pbk ` 2qak. From ak ă ak`1 it follows that bk ` 2 ą bk`1. l

Claim 2. The sequence pbkq is unbounded.
Proof. We start by rewriting bk`1ak`1 “ pbk ` 2qak as

ak`1 “ ak ¨
bk ` 2

bk`1

ùñ ak`1 � ak pbk ` 2q .

If the sequence pbkq were bounded, say by some positive integer B, then the prime factors of the
terms of the sequence pakq could only be primes less than or equal to B ` 2 or those dividing
a1 or a2, which contradicts the property in the statement of the problem. l

Consider now an arbitrary positive integer n. We assume n ą b2, otherwise we replace n by
an arbitrary multiple of n that is bigger than b2. By Claim 2, there exists k such that bk`1 ě n.
Consider the smallest such k. From Claim 1, it follows that we must have bk “ n ´ 1 and
bk`1 “ n (we assumed n ą b2 to ensure that k ě 2). We now find that

ak`1 “ ak ¨
bk ` 2

bk`1

“ ak ¨
n` 1

n
.

Because n and n` 1 are coprime, this immediately implies that ak is divisible by n.

Comment. For c a positive integer, the sequence ak “ ck satisfies the conditions of the problem.
Another example is

a1 “ 1, a2 “ 2, ak “ 3pk ´ 1q for k ě 3.
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N6. A sequence of integers a0, a1, a2, . . . is called kawaii, if a0 “ 0, a1 “ 1, and, for any
positive integer n, we have

pan`1 ´ 3an ` 2an´1qpan`1 ´ 4an ` 3an´1q “ 0.

An integer is called kawaii if it belongs to a kawaii sequence.
Suppose that two consecutive positive integers m and m`1 are both kawaii (not necessarily

belonging to the same kawaii sequence). Prove that 3 divides m, and that m{3 is kawaii.
(China)

Solution 1. We start by rewriting the condition in the problem as:

an`1 “ 3an ´ 2an´1, or an`1 “ 4an ´ 3an´1.

We have an`1 ” an or an´1 pmod 2q and an`1 ” an´1 or an pmod 3q for all n ě 1. Now, since
a0 “ 0 and a1 “ 1, we have that an ” 0, 1 mod 3 for all n ě 0. Since m and m ` 1 are kawaii
integers, then necessarily m ” 0 mod 3.

We also observe that a2 “ 3 or a2 “ 4. Moreover,

(1) If a2 “ 3, then an ” 1 pmod 2q for all n ě 1 since a1 ” a2 ” 1 pmod 2q.

(2) If a2 “ 4, then an ” 1 pmod 3q for all n ě 1 since a1 ” a2 ” 1 pmod 3q.

Since m ” 0 pmod 3q, any kawaii sequence containing m does not satisfy p2q, so it must
satisfy p1q. Hence, m is odd and m` 1 is even.

Take a kawaii sequence panq containing m` 1. Let t ě 2 be such that at “ m` 1. As panq
does not satisfy p1q, it must satisfy p2q. Then an ” 1 pmod 3q for all n ě 1. We define the
sequence a1n “ pan`1 ´ 1q{3. This is a kawaii sequence: a10 “ 0, a11 “ 1 and for all n ě 1,

pa1n`1 ´ 3a1n ` 2a1n´1qpa
1
n`1 ´ 4a1n ` 3a1n´1q “ pan`2 ´ 3an`1 ` 2anqpan`2 ´ 4an`1 ` 3anq{9 “ 0.

Finally, we notice that the term a1t´1 “ m{3 which implies that m{3 is kawaii.

Solution 2. We start by proving the following:
Claim 1. We have an ” 0, 1 mod 3 for all n ě 0.
Proof. We have an`1 “ 3an ´ 2an´1 “ 3pan ´ an´1q ` an´1 or an`1 “ 4an ´ 3an´1 “ 3pan ´
an´1q ` an, so an`1 ” an or an´1 mod 3, and since a0 “ 0 and a1 “ 1 the result follows. l

Hence if m and m` 1 are kawaii, then necessarily m ” 0 mod 3.
Claim 2. An integer ě 2 is kawaii if and only if it can be written as 1 ` b2 ` ¨ ¨ ¨ ` bn for
some n ě 2 with bi “ 2ri3si satisfying ri ` si “ i ´ 1 for i “ 2, . . . , n and bi | bi`1 for all
i “ 2, . . . , n´ 1.
Proof. For a kawaii sequence panq, we can write an`1 “ 3an ´ 2an´1 “ an ` 2pan ´ an´1q or
an`1 “ 4an ´ 3an´1 “ an ` 3pan ´ an´1q, so an`1 ´ an “ 2pan ´ an´1q or 3pan ´ an´1q. Hence,
an “ 1` b2 ` ¨ ¨ ¨ ` bn where b2 “ 2 or 3 and bi`1 “ 2bi or 3bi.

Conversely, given a number that can be written in that way, we consider any sequence given
by a0 “ 0, a1 “ 1 and ai “ 1` b2 ` ¨ ¨ ¨ ` bi for 2 ď i ď n and ai given by the kawaii condition
for i ě n` 1. This defines a kawaii sequence containing the given number as an. l

Let us suppose that m and m`1 are kawaii, then they belong to some kawaii sequences and
we can write them as in Claim 2 asm “ 1`2`¨ ¨ ¨`2``2`¨3¨A andm`1 “ 1`2`¨ ¨ ¨`2`

1

`2`
1

¨3¨A1

where ` is odd and `1 is even because of modulo 3 reasons. Since m ` 1 ” m pmod 2minp`,`1qq,
we have minp`, `1q “ 0, so `1 “ 0.

Then m` 1 “ 1` b2 ` ¨ ¨ ¨ ` bj for some bi’s as in Claim 2 with b2 “ 3 and bi | bi`1: so with

3 | bi for all i “ 2, . . . , j. Then
m

3
“ 1` b11 ` ¨ ¨ ¨ ` b1j´1 with b1i “

bi`1

3
as in Claim 2 and

m

3
is

a kawaii integer.
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Solution 3. (This solution is just a different combination of the ideas in Solutions 1 and 2)
We first prove that, in a kawaii sequence a0, a1, a2, . . ., every term at with t ě 0 is congruent to
0 or 1 modulo 3.

For n ě 1, put bn “ an ´ an´1. We have

at “ a0 `

t
ÿ

k“1

pak ´ ak´1q “

t
ÿ

k“1

bk. p˚q

Note that

an`1 ´ 3an ` 2an´1 “ bn`1 ´ 2bn and an`1 ´ 4an ` 3an´1 “ bn`1 ´ 3bn.

The conditions on the bi’s for defining a kawaii sequence are

b1 “ a1 ´ a0 “ 1, and
bn`1

bn
P t2, 3u for n ě 1.

1. If we have
bn`1

bn
“ 2 for any n with 1 ď n ď t´ 1, then p˚q implies that

at “
t
ÿ

k“1

2k´1
“ 2t ´ 1 ” 0, 1 pmod 3q.

2. If there exists some integer s with 2 ď s ď t´ 1 such that
b2

b1

“
b3

b2

“ ¨ ¨ ¨ “
bs
bs´1

“ 2,
bs`1

bs
“ 3,

it implies that 3 � bn for any n ě s` 1. Similarly to the argument in (1), we obtain

at ”
s
ÿ

k“1

bk ” 0, 1 pmod 3q.

3. If
b2

b1

“ b2 “ 3, we have 3 � bn for any n ě 2, and hence at ” 1 pmod 3q.

Combining these, we have proved that at ” 0, 1 pmod 3q.
We next prove that no positive kawaii integer is divisible by both 2 and 3. If b2 “ 2 for

some kawaii sequence, then 2 � bn and an ” 1 pmod 2q for all n ě 2 in it. If b2 “ 3 in some
kawaii sequence, then 3 � bn and an ” 1 pmod 3q for all n ě 2 in it.

Now, consider the original problem. Since m and m` 1 are both kawaii integer, it means

m ” 0, 1 pmod 3q, and m` 1 ” 0, 1 pmod 3q,

and hence we easily obtain 3 � m. Since a kawaii integer m is divisible by 3, m must be odd,
and hence m ` 1 is even. Take a kawaii sequence a0, a1, a2, . . . containing m ` 1 as at. The
fact that m ` 1 is even implies that b2 “ 3 and so 3 � bn for all n ě 2 in this sequence. Set

b1n “
bn`1

3
for n ě 1. Thus b11 “

b2

3
“ 1, and

b1n`1

b1n
“
bn`2

bn`1

P t2, 3u for all n ě 1. Define a10 “ 0

and a1n “
n
ÿ

k“1

b1k for n ě 1, then a10, a11, a12, . . . is a kawaii sequence. Now,

a1t´1 “

t´1
ÿ

k“1

b1k “
1

3

t
ÿ

k“2

bk “
1

3

˜

´b1 `

t
ÿ

k“1

bk

¸

“
1

3
p´1` atq “

m

3
.

This means that
m

3
is a kawaii integer.

Comment. There are infinitely many positive integers m such that m,m` 1,m{3 are kawaii. To see
this, let k ě 1 be a kawaii integer. Then 2k ` 1 and 3k ` 1 are kawaii by Claim 2 in Solution 2, and
3p2k ` 1q ` 1 “ 6k ` 4 and 2p3k ` 1q ` 1 “ 6k ` 3 are also kawaii.
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N7. Let a, b, c, d be positive integers satisfying

ab

a` b
`

cd

c` d
“
pa` bqpc` dq

a` b` c` d
.

Determine all possible values of a` b` c` d.
(Netherlands)

Answer: The possible values are the positive integers that are not square-free.

Solution.
First, note that if we take a “ `, b “ k`, c “ k`, d “ k2` for some positive integers k and `,

then we have
ab

a` b
`

cd

c` d
“

k`2

`` k`
`

k3`2

k`` k2`
“

k`

k ` 1
`

k2`

k ` 1
“ k`

and
pa` bqpc` dq

a` b` c` d
“
p`` k`qpk`` k2`q

`` k`` k`` k2`
“
kpk ` 1q2`2

`pk ` 1q2
“ k`,

so that
ab

a` b
`

cd

c` d
“ k` “

pa` bqpc` dq

a` b` c` d
.

This means that a` b` c` d “ `p1` 2k ` k2q “ `pk ` 1q2 can be attained. We conclude that
all non-square-free positive integers can be attained.

Now, we will show that if

ab

a` b
`

cd

c` d
“
pa` bqpc` dq

a` b` c` d

then a` b` c` d is not square-free. We argue by contradiction. Suppose that a` b` c` d is
square-free, and note that after multiplying by pa` bqpc` dqpa` b` c` dq, we obtain

pabpc` dq ` cdpa` bqqpa` b` c` dq “ pa` bq2pc` dq2. (1)

A prime factor of a` b` c` d must divide a` b or c` d, and therefore divides both a` b and
c ` d. Because a ` b ` c ` d is square-free, the fact that every prime factor of a ` b ` c ` d
divides a` b implies that a` b` c` d itself divides a` b. Because a` b ă a` b` c` d, this
is impossible. So a` b` c` d cannot be square-free.

Comment 1. Another way to conclude after obtaining (1) is by observing that

pa` bq2pc` dq2 ” pa` bq4 pmod a` b` c` dq

Hence a` b` c` d � pa` bq4. But if a` b` c` d is square-free, this forces a` b` c` d � a` b, which
is clearly a contradiction.

Comment 2. It seems difficult to characterise all quadruples pa, b, c, dq that satisfy the equality in
the problem. Many of them, including those used in the solution, are of the general form pa, b, c, dq “
pxy2, xyz, xyz, xz2q for some positive integers x, y, and z, but there are more solutions than that, such
as pa, b, c, dq “ p2, 7, 8, 10q or pa, b, c, dq “ p13, 14, 16, 38q.
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N8. Let Zą0 be the set of positive integers. Determine all functions f : Zą0 Ñ Zą0 such
that

f bfpaqpa` 1q “ pa` 1qfpbq

holds for all a, b P Zą0, where fkpnq “ fpfp¨ ¨ ¨ fpnq ¨ ¨ ¨ qq denotes the composition of f with
itself k times.

(Taiwan)

Answer: The only function satisfying the condition is fpnq “ n` 1 for all n P Zą0.

Let P pa, bq be the equality in the statement.

Solution 1. We divide the solution into 5 steps.

Step 1. (f is injective)
Claim 1. For any a ě 2, the set tfnpaq | n P Zą0u is infinite.

Proof. First, we have f fpaqpa ` 1q
P pa,1q
“ pa ` 1qfp1q. Varying a, we see that fpZą0q is infinite.

Next, we have f bfpa´1qpaq
P pa´1,bq
“ afpbq. So, varying b, f bfpa´1qpaq takes infinitely many values.

l

Claim 2. For any a ě 2 and n P Zą0, we have fnpaq ‰ a.
Proof. Otherwise we would get a contradiction with Claim 1. l

Assume fpbq “ fpcq for some b ă c. Then we have

pa` 1qfpcq
P pa,cq
“ f cfpaqpa` 1q

“ f pc´bqfpaq
`

f bfpaqpa` 1q
˘

P pa,bq
“ f pc´bqfpaq

`

pa` 1qfpbq
˘

“ f pc´bqfpaq
`

pa` 1qfpcq
˘

,

which contradicts Claim 2. So, f is injective.

Step 2. (fpZą0q “ Zě2)
Claim 3. 1 is not in the range of f .
Proof. If fpbq “ 1, then f fpaqpa` 1q “ a` 1 by P pa, 1q, which contradicts Claim 2. l

We say that a is a descendant of b if fnpbq “ a for some n P Zą0.
Claim 4. For any a, b ě 1, both of the following cannot happen at the same time:

• a is a descendant of b;

• b is a descendant of a.

Proof. If both of the above hold, then a “ fmpbq and b “ fnpaq for some m,n P Zą0. Then
a “ fm`npaq, which contradicts Claim 2. l

Claim 5. For any a, b ě 2, exactly one of the following holds:

• a is a descendant of b;

• b is a descendant of a;

• a “ b.
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Proof. For any c ě 2, taking m “ f cfpa´1q´1paq and n “ f cfpb´1q´1pbq, we have

fpmq “ f cfpa´1q
paq

P pa´1,cq
“ afpcq and fpnq “ f cfpb´1q

pbq
P pb´1,cq
“ bfpcq.

Hence
fnfpa´1q

paq
P pa´1,nq
“ afpnq “ abfpcq “ bfpmq

P pa´1,mq
“ fmfpb´1q

pbq.

The assertion then follows from the injectivity of f and Claim 2. l

Now, we show that any a ě 2 is in the range of f . Let b “ fp1q. If a “ b, then a is in the
range of f . If a ‰ b, either a is a descendant of b, or b is a descendant of a by Claim 5. If b is a
descendant of a, then b “ fnpaq for some n P Zą0, so 1 “ fn´1paq. Then, by Claim 3, we have
n “ 1, so 1 “ a, which is absurd. So, a is a descendant of b. In particular, a is in the range of
f . Thus, fpZą0q “ Zě2.

Step 3. (fp1q “ 2)
Claim 6. Let a, n ě 2, then na is a descendant of a.

Proof. We write n “ fpmq by Step 2. We have na “ fpmqa
P pa´1,mq
“ fmfpa´1qpaq, which shows

na is a descendant of a. l

By Claim 6, all even integers ě 4 are descendants of 2. Hence 2 “ fp2k`1q for some k ě 0.
Next, we show fp2k ` 1q ě fp1q, which implies fp1q “ 2. It trivially holds if k “ 0. If

k ě 1, let n be the integer such that fnp2q “ 2k ` 2. For any b ą n{fp1q, we have

f bfp1q´np2k ` 2q “ f bfp1qp2q
P p1,bq
“ 2fpbq and f bfp2k`1q

p2k ` 2q
P p2k`1,bq
“ p2k ` 2qfpbq.

By Claim 6, p2k`2qfpbq is a descendant of 2fpbq. By Claim 2, we have bfp2k`1q ą bfp1q´n.
By taking b large enough, we conclude fp2k ` 1q ě fp1q.

Step 4. (fp2q “ 3 and fp3q “ 4) From fp1q “ 2 and P p1, bq, we have f 2bp2q “ 2fpbq. So taking
b “ 1, we obtain f 2p2q “ 2fp1q “ 4; and taking b “ fp2q, we have f 2fp2qp2q “ 2f 2p2q “ 8.
Hence, f 2fp2q´2p4q “ f 2fp2qp2q “ 8 and f fp3qp4q P p3,1q“ 8 give fp3q “ 2fp2q ´ 2.

Claim 7. For any m,n P Zą0, if fpmq divides fpnq, then m ď n.
Proof. If fpmq “ fpnq, the assertion follows from the injectivity of f . If fpmq ă fpnq, by
P pa,mq, P pa, nq and Claim 6, we have that fnfpaqpa ` 1q is a descendant of fmfpaqpa ` 1q for
any a P Zą0. So mfpaq ă nfpaq, and m ă n. l

By Claim 7, every possible divisor of fp2q is in t1, fp1q “ 2, fp2qu. Thus fp2q is an odd
prime or fp2q “ 4. Since f 2p2q “ 4, we have fp2q ‰ 4, and hence fp2q is an odd prime. We set
p “ fp2q.

Now, fp3q “ 2fp2q ´ 2 “ 2pp ´ 1q. Since p ´ 1 divides fp3q, we have p ´ 1 P t1, fp1q “
2, fp2q “ pu by Claim 7, so p´ 1 “ 2. Thus, fp2q “ p “ 3 and fp3q “ 2pp´ 1q “ 4.

Step 5. (fpnq “ n` 1)
Claim 8. For any b ě 1, fp2fpbq ´ 1q “ 2b` 2.
Proof. Since f 2p2q “ 4, we have f 2b´2p4q “ f 2bp2q “ 2fpbq, so

f fp2fpbq´1q`2b´2
p4q “ f fp2fpbq´1q

p2fpbqq
P p2fpbq´1,1q

“ 4fpbq
P p3,bq
“ f 4b

p4q,

which gives us fp2fpbq ´ 1q “ 2b` 2. l
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Finally, we prove fpnq “ n`1 by induction on n. Suppose fpnq “ n`1 for all 1 ď n ď 2b`1.
Replace b by b` 1 in fp2fpbq ´ 1q “ 2b` 2 to get

fp2b` 3q “ fp2fpb` 1q ´ 1q “ 2pb` 1q ` 2 “ 2b` 4.

By induction hypothesis, we have f bpb` 2q “ 2b` 2. Hence

fpfp2b` 2qq “ f b`2
pb` 2q “ f fpb`1q

pb` 2q
P pb`1,1q
“ 2pb` 2q “ fp2b` 3q.

By injectivity, fp2b`2q “ 2b`3. Then fpnq “ n`1 for all n P Zą0, which is indeed a solution.

Solution 2. In the same way as Steps 1-2 of Solution 1, we have that f is injective and
fpZą0q “ Zě2.

We first note that Claim 2 in Solution 1 is also true for a “ 1.

Claim 2’. For any a, n P Zą0, we have fnpaq ‰ a.
Proof. If a ě 2, the assertion was proved in Claim 2 in Solution 1. If a “ 1, we have that 1 is
not in the range of f by Claim 3 in Solution 1. So, fnp1q ‰ 1 for every n P Zą0. l

For any a, b P Zą0, we have

f bfpfpaq´1q`1
paq “ f bfpfpaq´1q

pfpaqq
P pfpaq´1,bq

“ fpaqfpbq.

Since the right-hand side is symmetric in a, b, we have

f bfpfpaq´1q`1
paq “ fpaqfpbq “ fafpfpbq´1q`1

pbq.

Since f is injective, we have f bfpfpaq´1qpaq “ fafpfpbq´1qpbq. We set gpnq “ fpfpnq´1q. Then we
have f bgpaqpaq “ fagpbqpbq for any a, b P Zą0. We set na,b “ bgpaq ´ agpbq. Then, for sufficiently
large n, we have fn`na,bpaq “ fnpbq. For any a, b, c P Zą0 and sufficiently large n, we have

fn`na,b`nb,c`nc,apaq “ fnpaq.

By Claim 2’ above, we have na,b ` nb,c ` nc,a “ 0, so

pa´ bqgpcq ` pb´ cqgpaq ` pc´ aqgpbq “ 0.

Taking pa, b, cq “ pn, n ` 1, n ` 2q, we have gpn ` 1q ´ gpnq “ gpn ` 2q ´ gpn ` 1q. So,
tgpnquně1 is an arithmetic progression.

There exist C,D P Z such that gpnq “ fpfpnq ´ 1q “ Cn`D for all n P Zą0. By Step 2 of
Solution 1, we have fpZą0q “ Zě2, so C “ 1. Since 2 “ minnPZą0tfpfpnq´ 1qu, we have D “ 1.

Thus, gpnq “ fpfpnq ´ 1q “ n ` 1 for all n ě 1. For any a, b P Zą0, we have f bpa`1qpaq “
fapb`1qpbq. By the injectivity of f , we have f bpaq “ fapbq. For any n P Zą0, taking pa, bq “ p1, nq,
we have fnp1q “ fpnq, so fn´1p1q “ n again by the injectivity of f . For any n ě 1, we have
fpnq “ fpfn´1p1qq “ fnp1q “ n` 1.

Solution 3. The following is another way of finishing Solution 2 after Claim 2’ and having
introduced gpnq “ fpfpnq ´ 1q. For a, b P Zą0 satisfying b “ fkpaq, we have

f bgpaqpfpaqq “ f bfpfpaq´1q
pfpaqq

P pfpaq´1,bq
“ fpaqfpbq

P pfpbq´1,aq
“ fafpfpbq´1q

pfpbqq

“ fagpbq`kpfpaqq.
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By Claim 2’ in Solution 2, we have bgpaq “ agpbq`k, so fkpaq¨gpaq “ a¨gpfkpaqq`k. Therefore,
for any n ě 0, we put an “ fnp1q. We have

$

’

&

’

%

an`1 ¨ gpanq “ an ¨ gpan`1q ` 1

an`2 ¨ gpan`1q “ an`1 ¨ gpan`2q ` 1

an`2 ¨ gpanq “ an ¨ gpan`2q ` 2.

Then we have

an ¨ an`1 ¨ gpan`2q ` 2an`1 “ an`1 ¨ an`2 ¨ gpanq

“ an`2

`

an ¨ gpan`1q ` 1
˘

“ an ¨ an`2 ¨ gpan`1q ` an`2

“ an
`

an`1 ¨ gpan`2q ` 1
˘

` an`2

“ an ¨ an`1 ¨ gpan`2q ` an ` an`2.

From these, we have 2an`1 “ an ` an`2. Thus panq is an arithmetic progression, and we have
an “ fnp1q “ Cn`D for some C,D P Z.

By Step 2 in Solution 1, any a P Zą0 is a descendant of 1, and fpZą0q “ Zě2. Hence D “ 1
and C “ 1, and so fnp1q “ n`1. For any n ě 1, we have fn´1p1q “ n, so fpnq “ fpfn´1p1qq “
fnp1q “ n` 1.

Solution 4.
We provide yet another (more technical) solution assuming Step 1 and Step 2 of Solution 1.
By Claim 5 in Solution 1, every a ě 2 is a descendant of 1. Let g and h be the functions on

Zě2 such that f gpaqp1q “ a and hpaq “ fpa ´ 1q. Then, g : Zě2 Ñ Zě1 and h : Zě2 Ñ Zě2 are
bijections. The equation P pa, bq can be rewritten as

gpahpbqq “ gpaq ` pb´ 1qhpaq.

Consider the set Sa “ gpa ¨ Zą0q. Since h is a bijection onto Zě2, we have

Sa “ gpaq ` hpaq ¨ Zě0.

Consider the intersection Sa X Sb “ Slcmpa,bq. If we put c “ lcmpa, bq, this gives

pgpaq ` hpaq ¨ Zě0q X pgpbq ` hpbq ¨ Zě0q “ gpcq ` hpcq ¨ Zě0.

Then we have hpcq “ lcmphpaq, hpbqq since the left hand side must be of the form m `

lcmphpaq, hpbqq ¨ Zě0 for some m.
If b is a multiple of a, then lcmpa, bq “ b, so hpbq “ lcmphpaq, hpbqq, and hence hpbq is a

multiple of hpaq. Conversely, if hpbq is a multiple of hpaq, then hpbq “ lcmphpaq, hpbqq. On
the other hand, we have hpcq “ lcmphpaq, hpbqq. Since h is injective, we have c “ b, so b is a
multiple of a.

We apply the following claim for H “ h.

Claim. Suppose H : Zě2 Ñ Zě2 is a bijection such that a divides b if and only if Hpaq divides
Hpbq. Then:

1. Hppq is prime if and only if p is prime;

2. Hp
śm

i“1 p
ei
i q “

śm
i“1Hppiq

ei i.e. H is completely multiplicative;

3. H preserves gcd and lcm.



Proof. We define Hp1q “ 1, and consider the bijection H : Zą0 Ñ Zą0. By the conditions on
H, for any n P Zě2, n and Hpnq have the same number of divisors. Hence Hppq is prime if and
only if p is prime.

Since the only prime dividing Hpprq is Hppq, we have Hpprq “ Hppqs for some s ě 1.
Counting the number of divisors, we have s “ r, so Hpprq “ Hppqr for any prime p and r ě 1.

For a, b P Zą0, recall that gcdpa, bq is a unique positive integer satisfying the following
condition: for any c P Zą0, c divides gcdpa, bq if and only if c divides both a and b. By the
condition on H, for any c P Zą0, Hpcq divides Hpgcdpa, bqq if and only if Hpcq divides both
Hpaq and Hpbq. Hence we have Hpgcdpa, bqq “ gcdpHpaq, Hpbqq.

Similarly, we have Hplcmpa, bqq “ lcmpHpaq, Hpbqq. Hence we have

H

˜

m
ź

i“1

peii

¸

“ H
`

lcmppe11 , . . . , p
er
r q

˘

“ lcm
`

Hppe11 q, . . . , Hpp
er
r q

˘

“ lcm
`

Hpp1q
e1 , . . . , Hpprq

er
˘

“

m
ź

i“1

Hppiq
ei

since Hppiq and Hppjq are different primes for i ‰ j. l

Take two primes p ‰ q, and let x, y be positive integers such that

gppq ` px´ 1qhppq “ gpqq ` py ´ 1qhpqq.

This is possible as hppq and hpqq are two distinct primes. For every k ě 0, by P pp, x ` khpqqq
and P pq, y ` khppqq, we have

#

g
`

p ¨ hpx` khpqqq
˘

“ gppq `
`

x` khpqq ´ 1
˘

hppq,

g
`

q ¨ hpy ` khppqq
˘

“ gpqq `
`

y ` khppq ´ 1
˘

hpqq,

where the right hand sides are equal. By the injectivity of g, we have

p ¨ hpx` khpqqq “ q ¨ hpy ` khppqq.

So, hpy ` khppqq is divisible by p for all k ě 0. By the above Claim, h preserves gcd, so

hpgcdpy, hppqqq “ gcdphpyq, hpy ` hppqqq

is divisible by p. Since hppq is a prime, y must be divisible by hppq. Moreover, hphppqq is also
a prime, so we have hphppqq “ p. The function h ˝ h is completely multiplicative, so we have
hphpnqq “ n for every n ě 2.

By P pa, hpbqq and P pb, hpaqq, we have
#

gpabq “ g
`

a ¨ hphpbqq
˘ P pa,hpbqq

“ gpaq `
`

hpbq ´ 1
˘

hpaq,

gpbaq “ g
`

b ¨ hphpaqq
˘ P pb,hpaqq

“ gpbq `
`

hpaq ´ 1
˘

hpbq,

so
gpaq ` hpaq

`

hpbq ´ 1
˘

“ gpabq “ gpbq ` hpbq
`

hpaq ´ 1
˘

.

Hence gpaq ´ hpaq “ gpbq ´ hpbq for any a, b ě 2, so g´ h is a constant function. By comparing
the images of g and h, the difference is ´1, i.e. gpaq ´ hpaq “ 1 for any a ě 2.

So, we have gphpaqq “ hphpaqq ´ 1 “ a´ 1. By definition,

fpa´ 1q “ hpaq “ f gphpaqqp1q “ fa´1
p1q.

By the injectivity of f , we have fa´2p1q “ a ´ 1 for every a ě 2. From this, we can deduce
inductively that fpaq “ a` 1 for every a ě 1.
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