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Problems
Algebra

Professor Oak is feeding his 100 Pokémon. Each Pokémon has a bowl whose capacity
is a positive real number of kilograms. These capacities are known to Professor Oak. The total
capacity of all the bowls is 100 kilograms. Professor Oak distributes 100 kilograms of food in
such a way that each Pokémon receives a non-negative integer number of kilograms of food
(which may be larger than the capacity of their bowl). The dissatisfaction level of a Pokémon
who received N kilograms of food and whose bowl has a capacity of C' kilograms is equal to
IN —C|.

Find the smallest real number D such that, regardless of the capacities of the bowls, Pro-
fessor Oak can distribute the food in a way that the sum of the dissatisfaction levels over all
the 100 Pokémon is at most D.

Let R be the set of real numbers. Let f: R — R be a function such that
fla+y) flx—y) = f(z)* = fly)*

for every x,y € R. Assume that the inequality is strict for some xg, 3y € R.
Prove that f(x) = 0 for every x € R or f(x) < 0 for every x € R.

(Ukraine)

(Malaysia)
Let xq, 2o, ..., o023 be distinct real positive numbers such that

11 1
an = A[(T1 + 22+ -+ 2) ottt —
1 2 n

is an integer for every n = 1,2,...,2023. Prove that ase3 = 3034.

(Netherlands)

Let R.o be the set of positive real numbers. Determine all functions f: R.g — R.g
such that

z(f(@) + f(v) = (f(f(2) +y)f(»)

for every x,y € R.,.

Let ay, a9, ..., ases be positive integers such that

® a1,as,...,a09023 is a permutation of 1,2,...,2023, and

(Belgium,)

o |CL1 — CL2|, |(12 - CL3|7 ce |CL2022 — (12023| is a permutation of 1, 2, ce ,2022

Prove that max(al, a2023) > 507.
(Australia)
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- Let k£ > 2 be an integer. Determine all sequences of positive integers aq, as, ... for
which there exists a monic polynomial P of degree k with non-negative integer coefficients such
that

P(an) = Gns1any2 - Gy

for every integer n > 1.
(Malaysia)

- Let N be a positive integer. Prove that there exist three permutations aq, as, ..., ay;
bi,bo, ..., by; and ¢y, co,...,cy of 1,2, ..., N such that

[Var + Vo + e — 2V | < 2023

for every k =1,2,..., N.
(China)
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Combinatorics

Let m and n be positive integers greater than 1. In each unit square of an m x n grid
lies a coin with its tail-side up. A mowve consists of the following steps:

1. select a 2 x 2 square in the grid;
2. flip the coins in the top-left and bottom-right unit squares;
3. flip the coin in either the top-right or bottom-left unit square.

Determine all pairs (m,n) for which it is possible that every coin shows head-side up after a
finite number of moves.

(Thailand)

Determine the maximal length L of a sequence a4, ..., ar, of positive integers satisfying
both the following properties:

e cvery term in the sequence is less than or equal to 22023, and

e there does not exist a consecutive subsequence a;, ;41 ..., a; (where 1 < i < j < L) with
a choice of signs s;, s;41,...,s; € {1, —1} for which

S;a; + Si+1Q5+1 + -+ SjCLj = 0

(Czech Republic)

Let n be a positive integer. We arrange 1 + 2 + --- + n circles in a triangle with n
rows, such that the i*" row contains exactly 7 circles. The following figure shows the case n = 6.

In this triangle, a ninja-path is a sequence of circles obtained by repeatedly going from a
circle to one of the two circles directly below it. In terms of n, find the largest value of k£ such
that if one circle from every row is coloured red, we can always find a ninja-path in which at

least k of the circles are red.
(Netherlands)

Let n > 2 be a positive integer. Paul has a 1 x n? rectangular strip consisting of n?
unit squares, where the i*® square is labelled with ¢ for all 1 < i < n?. He wishes to cut the
strip into several pieces, where each piece consists of a number of consecutive unit squares, and
then translate (without rotating or flipping) the pieces to obtain an n x n square satisfying the
following property: if the unit square in the i'" row and j™ column is labelled with a;;, then
a;; — (i 4+ 7 — 1) is divisible by n.

Determine the smallest number of pieces Paul needs to make in order to accomplish this.

(U.S.A.)
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Elisa has 2023 treasure chests, all of which are unlocked and empty at first. Each day,
Elisa adds a new gem to one of the unlocked chests of her choice, and afterwards, a fairy acts
according to the following rules:

e if more than one chests are unlocked, it locks one of them, or
e if there is only one unlocked chest, it unlocks all the chests.

Given that this process goes on forever, prove that there is a constant C' with the following
property: Elisa can ensure that the difference between the numbers of gems in any two chests
never exceeds C, regardless of how the fairy chooses the chests to lock.

(Israel)

- Let N be a positive integer, and consider an N x N grid. A right-down path is a
sequence of grid cells such that each cell is either one cell to the right of or one cell below the
previous cell in the sequence. A right-up path is a sequence of grid cells such that each cell is
either one cell to the right of or one cell above the previous cell in the sequence.

Prove that the cells of the N x N grid cannot be partitioned into less than N right-down
or right-up paths. For example, the following partition of the 5 x 5 grid uses 5 paths.

(Canada)

- The Imomi archipelago consists of n > 2 islands. Between each pair of distinct islands

is a unique ferry line that runs in both directions, and each ferry line is operated by one of

k companies. It is known that if any one of the k£ companies closes all its ferry lines, then

it becomes impossible for a traveller, no matter where the traveller starts at, to visit all the

islands exactly once (in particular, not returning to the island the traveller started at).
Determine the maximal possible value of k£ in terms of n.

(Ukraine)
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Geometry

Let ABCDE be a convex pentagon such that ZABC = ZAED = 90°. Suppose
that the midpoint of C'D is the circumcentre of triangle ABE. Let O be the circumcentre of
triangle ACD.

Prove that line AO passes through the midpoint of segment BE.
(Slovakia)

Let ABC be a triangle with AC > BC. Let w be the circumcircle of triangle ABC
and let r be the radius of w. Point P lies on segment AC such that BC' = C'P and point S is
the foot of the perpendicular from P to line AB. Let ray BP intersect w again at D and let )
lie on line SP such that PQ) = r and S, P, @ lie on the line in that order. Finally, let the line
perpendicular to CQ) from A intersect the line perpendicular to D@ from B at E.

Prove that E lies on w.
(Iran)

Let ABCD be a cyclic quadrilateral with ZBAD < ZADC'. Let M be the midpoint
of the arc C'D not containing A. Suppose there is a point P inside ABC'D such that ZADB =
/CPD and ZADP = /PCB.

Prove that lines AD, PM, BC' are concurrent.
(Slovakia)

Let ABC' be an acute-angled triangle with AB < AC'. Denote its circumcircle by €2
and denote the midpoint of arc CAB by S. Let the perpendicular from A to BC meet BS
and 2 at D and E # A respectively. Let the line through D parallel to BC' meet line BE at L
and denote the circumcircle of triangle BDL by w. Let w meet 2 again at P # B.

Prove that the line tangent to w at P, and line BS intersect on the internal bisector
of ZBAC.
(Portugal)

Let ABC be an acute-angled triangle with circumcircle w and circumcentre O. Points
D # B and E # C' lie on w such that BD 1 AC and CE | AB. Let CO meet AB at X, and
BO meet AC at Y.

Prove that the circumcircles of triangles BX D and C'Y E have an intersection on line AO.
(Malaysia)

Let ABC' be an acute-angled triangle with circumcircle w. A circle I' is internally
tangent to w at A and also tangent to BC' at D. Let AB and AC intersect I' at P and @)
respectively. Let M and N be points on line BC such that B is the midpoint of DM and
C' is the midpoint of DN. Lines M P and N(@ meet at K and intersect I' again at / and J
respectively. The ray K A meets the circumcircle of triangle IJK at X # K.

Prove that ZBXP = ZCXQ.
(United Kingdom)
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Let ABC be an acute, scalene triangle with orthocentre H. Let ¢, be the line through
the reflection of B with respect to C'H and the reflection of C' with respect to BH. Lines ¢,
and /. are defined similarly. Suppose lines /¢, ¢;, and /. determine a triangle T .

Prove that the orthocentre of 7, the circumcentre of 7 and H are collinear.
(Ukraine)

- Let ABC' be an equilateral triangle. Points A;, B, C; lie inside triangle ABC' such
that triangle A;B;C is scalene, BA; = A;C, CB, = B1A, AC; = (1B and

/BAC+ £LCB1A+ LAC B = 480°.
Lines BC; and CBj intersect at A,; lines CA; and AC, intersect at By; and lines AB; and
BA; intersect at C5.

Prove that the circumcircles of triangles AA; Ay, BB By, C'C1C5 have two common points.

(U.S.A.)
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Number Theory

N1. Determine all positive, composite integers n that satisfy the following property: if
the positive divisors of n are 1 = d; < dy < --- < di = n, then d; divides d;,1 + d; o for every
1<i<k—-2

(Colombia)

Determine all pairs (a, p) of positive integers with p prime such that p®+a* is a perfect
square.
(Bangladesh)

For positive integers n and k > 2 define Ey(n) as the greatest exponent r such that
k" divides n!. Prove that there are infinitely many n such that Fip(n) > Eg(n) and infinitely
many m such that Ejo(m) < Egq(m).

(Brazil)

Let ay,as,...,a,,b1,b9,...,b, be 2n positive integers such that the n + 1 products

a1a2a3 - - - Ap,
biazas - - - ap,
bibaag - - - ay,

b1babs - - - by,

form a strictly increasing arithmetic progression in that order. Determine the smallest positive

integer that could be the common difference of such an arithmetic progression.
(Canada)

Let a1 < ay < az < --- be positive integers such that ay,; divides 2(a; + ag + -+ - + ay,)

for every k > 1. Suppose that for infinitely many primes p, there exists & such that p divides

ai. Prove that for every positive integer n, there exists k such that n divides ay.
(Netherlands)

A sequence of integers ag, a, as, ... is called kawaii, if ag = 0,a; = 1, and, for any

positive integer n, we have
((ln+1 — 3an + 2an_1)(an+1 — 46Ln + San_l) = 0.

An integer is called kawaii if it belongs to a kawaii sequence.
Suppose that two consecutive positive integers m and m + 1 are both kawaii (not necessarily
belonging to the same kawaii sequence). Prove that 3 divides m, and that m/3 is kawaii.

(China)
Let a, b, ¢, d be positive integers satisfying
ab N cd _ (a+b)(c+d)
a+b c+d a+b+c+d’
Determine all possible values of a + b + ¢ + d.
(Netherlands)

Let Z-qo be the set of positive integers. Determine all functions f: Z.y — Z-o such
that

1 +1) = (a+1)f(b)
holds for all a,b € Z-y, where f¥(n) = f(f(--- f(n)---)) denotes the composition of f with

itself £ times.
(Taiwan)
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Solutions

Algebra

Professor Oak is feeding his 100 Pokémon. Each Pokémon has a bowl whose capacity
is a positive real number of kilograms. These capacities are known to Professor Oak. The total
capacity of all the bowls is 100 kilograms. Professor Oak distributes 100 kilograms of food in
such a way that each Pokémon receives a non-negative integer number of kilograms of food
(which may be larger than the capacity of their bowl). The dissatisfaction level of a Pokémon
who received N kilograms of food and whose bowl has a capacity of C kilograms is equal to
IN —C|.

Find the smallest real number D such that, regardless of the capacities of the bowls, Pro-
fessor Oak can distribute the food in a way that the sum of the dissatisfaction levels over all
the 100 Pokémon is at most D.

(Ukraine)

Answer: The answer is D = 50.

Solution 1. First, consider the situation where 99 bowls have a capacity of 0.5 kilograms and
the last bowl has a capacity of 50.5 kilograms. No matter how Professor Oak distributes the
food, the dissatisfaction level of every Pokémon will be at least 0.5. This amounts to a total
dissatisfaction level of at least 50, proving that D > 50.

Now we prove that no matter what the capacities of the bowls are, Professor Oak can always
distribute food in a way that the total dissatisfaction level is at most 50. We start by fixing
some notation. We number the Pokémon from 1 to 100. Let C; > 0 be the capacity of the
bowl of the i*" Pokémon. By assumption, we have C; + Cy + --- + Cloo = 100. We write
F; := C; — |C;] for the fractional part of C;. Without loss of generality, we may assume that
Fi < Fy, <--- < Fip.

Here is a strategy: Professor Oak starts by giving |C;] kilograms of food to the i** Pokémon.
Let

R := 100—[01J—[C2J—"'—[0100J =F1+F2+"'+F100>0

be the amount of food left. He continues by giving an extra kilogram of food to the R Pokémon
numbered 100 — R+ 1,100 — R + 2,...,100, i.e. the Pokémon with the R largest values of Fj.
By doing so, Professor Oak distributed 100 kilograms of food. The total dissatisfaction level
with this strategy is

d:= Fl + -+ Fl()Q_R + (1 — FlOO—R+1) + -+ (1 — FlOO)-
We can rewrite

d=Q(Fl+"'+F100_R)+R*(F1+"'+F100)
=2(Fy + -+ Fioo_r)-

Now, observe that the arithmetic mean of Fi, F3, ..., Figo_g is not greater than the arithmetic
mean of I, Iy, ..., Flgg, because we assumed F; < Fy < - -+ < Fjg9. Therefore
Fi+ -+ Figo R(100 — R)
d<2(100 - R) - =2 ——=
( ) 100 100

Finally, we use the AM-GM inequality to see that R(100 — R) < 1322 which implies d < 50.
We conclude that there is always a distribution for which the total dissatisfaction level is at
most 50, proving that D < 50.
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Solution 2. We adopt the same notation as in Solution 1. Let C; > 0 be the capacity
of the bowl of the i*" Pokémon. By assumption, we have C; + Cy 4 -+ + Cig90 = 100. We
write F; := C; — |C;] for the fractional part of C;, and R = F} + F5 + --- + Fjpo. Note that
R =100 — [Cy] — - -+ — |C100] is an integer.

This solution uses the probabilistic method. We consider all distributions in which each
Pokémon receives |C;] + ¢; kilograms of food, where ¢; € {0,1} and &1 + &3 + -+ + €100 = R.
There are (100) such distributions. Suppose each of them occurs in an equal probability. In

R
other words,

. it 100—R
o 0 with probability =557,
;=

. o7 R
1 with probability 1.
The expected value of the dissatisfaction level of the i*" Pokémon is

100 — R
100

_10-R_ R

(O,-—[Cij)+%([0ij+1—0,-) Ll )

Hence, the expected value of the total dissatisfaction level is

100 100 100
100-R,, R 100 - R R
P le s LRy = F+—N(1-F
;( 00 1 100 )) 100 25 g )

100 — R R

. — . (100 —
100 et 100 (100 = R)

_, R(100 — R)

N 100

As in Solution 1, this is at most 50. We conclude that there is at least one distribution for
which the total dissatisfaction level is at most 50.
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Let R be the set of real numbers. Let f: R — R be a function such that
fla+y)flx—y) = f(z)* — f(y)*

for every x,y € R. Assume that the inequality is strict for some xg, 3o € R.
Prove that f(x) = 0 for every z € R or f(z) < 0 for every z € R.
(Malaysia)

Common remarks. We will say that f has constant sign, if f satisfies the conclusion of the
problem.

Solution 1. We introduce the new variables s := x + y and t := x — y. Equivalently, x = ST”
and y = 5. The inequality becomes

f(S)f(t)>f(3;t)2_f(3;t>z

for every s,t € R. We replace t by —t to obtain

ooz (50 (5

Summing the previous two inequalities gives

F)(f) + f(=1)) =0

for every s,t € R. This inequality is strict for s = xg + yo and t = xy — yo by assumption. In
particular, there exists some ty = zy — yo for which f(to) + f(—to) # 0. Since f(s)(f(to) +
f(=t9)) = 0 for every s € R, we conclude that f(s) must have constant sign.

Solution 2. We do the same change of variables as in Solution 1 to obtain

oo (S5 () 0

In this solution, we replace s by —s (instead of ¢t by —t). This gives

sz s () s (B 2)

We now go back to the original inequality. Substituting x = y gives f(2x)f(0) = 0 for every
x € R. If f(0) # 0, then we conclude that f indeed has constant sign. From now on, we will
assume that

f(0)=0.
Substituting x = —y gives f(—x)? > f(z)?. By permuting x and —z, we conclude that
f(=a)? = f(x)®

for every x € R.
Using the relation f(z)? = f(—x)?, we can rewrite (2) as

f(—S)f(t)>f(8;t)2_f(s—2|rt>2.

Summing this inequality with (1), we obtain

(f(s)+ f(=3)) f(t) =0

for every s,t € R and we can conclude as in Solution 1.
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Solution 3. We prove the contrapositive of the problem statement. Assume that there exist
a,b € R such that f(a) <0 and f(b) > 0. We want to prove that the inequality is actually an
equality, i.e. it is never strict.

Lemma 1. The function f is odd, i.e. f(x) + f(—xz) = 0 for every z € R.

Proof. We plug in z = 7* and y = “5* in the original inequality, where u is a free variable.
We obtain
a+u a—u
f@f = £ (00 - (S

Replacing v with —u and summing the two inequalities as in the previous solutions, we get

F@)(f(u) + f(=u)) =0

for every u € R. Since f(a) < 0 by assumption, we conclude that f(u) + f(—u) < 0 for every
ue R.

We can repeat the above argument with b instead of a. Since f(b) > 0 by assumption, we
conclude that f(u) + f(—u) = 0 for every u € R. This implies that f(u) + f(—u) = 0 for every
u € R. L]

Now, using that f is odd, we can write the following chain of inequalities

f@)?=fy)? < flz+y)flz—y)
—fly+2)fly—2)
—(f(y)? = f(2)?)
f@)? = fy)*.

We conclude that every inequality above is actually an inequality, so

fle+y)flx—y) = f2) = fy)?

N

N

for every x,y € R.

Solution 4. As in Solution 3, we prove the contrapositive of the statement. Assume that
there exist a,b € R such that f(a)f(b) < 0. We want to prove that the inequality is actually
an equality, i.e. it is never strict.

In this solution, we construct an argument by multiplying inequalities, rather than adding
them as in Solutions 1-3.

Lemma 2. f(b)f(—b) < 0.

Proof. Let x1 := “T“’ and y; := “T’b so that a = 1 + y; and b = x; — ;. Plugging in z = x4

and y — yy, we obtain
0> f(a)f(b) = f(z1 +y) f(21 — 1) = f(21)* = f(w)?

which implies f(21)2 — f(y1)? < 0. Similarly, by plugging in = y1 and y = 71, we get
F@)f(=b) = flyr +x)flyr —21) = f(y1)® = flz).

Using f(x1)* — f(y1)? < 0, we conclude f(a)f(—b) > 0. If we multiply the two inequalities
fa)f(b) <0 and f(a)f(=b) > 0, we get f(a)*f(b)f(—b) < 0 and hence

f(b)f(=b) <0.

Lemma 3. f(x)f(—xz) <0 for every z € R.
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Proof. As in Solution 2, we prove that f(z)? = f(—z)? for every x € R and we rewrite the

original inequality as ) ,
s =1 (5 (55

We replace s by —s and ¢ by —t, and use the relation f(x)? = f(—x)?, to get

F=s)f(=t) = f (_52_ t)2 L (—s; t)2
:f<5‘2”)2_f<s;t>2'

Up to replacing t by —t, we can assume that f (STH)2 —f (%)2 > 0. Multiplying the two
previous inequalities leads to

f(8)f(=s)f(&)f(=t) =0
for every s,t € R. This shows that f(s)f(—s) (as a function of s) has constant sign. Since
f(b)f(=b) < 0, we conclude that
fl@)f(=2) <0
for every x € R. ]
Lemma 3, combined with the relation f(x)? = f(—x)?, implies f(z) + f(—xz) = 0 for every
x € R, i.e. fis odd. We conclude with the same argument as in Solution 3.

Comment. The presence of squares on the right-hand side of the inequality is not crucial as Solution 1
illustrates very well. However, it allows non-constant functions such as f(z) = |z| to satisfy the
conditions of the problem statement.
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Let xq,xo, ..., o023 be distinct real positive numbers such that

1 1 1
Ap = ($1+!L‘2+”‘+£L‘n) x—+;+"'+$—
1 2 n

is an integer for every n = 1,2,...,2023. Prove that as3 = 3034.

(Netherlands)

Solution 1. We start with some basic observations. First note that the sequence aq, as, ..., a3
is increasing and thus, since all elements are integers, a,.1 — a, = 1. We also observe that

a; =1 and
1 1
ag = A[(x14+22) | —+— ) >2
T i)

by Cauchy-Schwarz inequality and using x; # 5. So, as = 3.
Now, we proceed to the main part of the argument. We observe that 3034 is about three
halves of 2023. Motivated by this observation, we will prove the following.

Claim. If apyq — a, = 1, then a,y0 — apy1 = 2.
In other words, the sequence has to increase by at least 2 at least half of the times. Assuming
the claim is true, since a; = 1, we would be done since

2023 = (@2023 — @2022) + (@2022 — G2091) + - -+ + (a2 — a1) + ay
> (2+1)-1011+ 1
= 3034.

We now prove the claim. We start by observing that

) 1 1
ar = (14 + Tp41) prot S
1 n+1

1 1
=@+t | —++— ) +1
I Ty

1 1
+ (14 ap) F T (| —+ -+ —
Tn41 T Tn
1 1 1
>ai+1+2\/ (:c1+---+:cn)-xn+1<—+---+—)
Tni1 I Ln
=ai+1+2an
= (an +1)?,

where we used AM-GM to obtain the inequality. In particular, if a,,1 = a, + 1, then

(x1+---+a:n)=a:n+1<xi+~-+i). (1)

1 Tn

Tn+1

Now, assume for the sake of contradiction that both a,,; = a, + 1 and a,,;2 = a,+1 + 1 hold.
In this case, (1) gives

1 1
(x1+---+xn+1)::vn+2 x—+“'+ .

Tn+2 1 Tn+1

We can rewrite this relation as

Tn 1 T 1 1
+1< ($1++xn)+1): +2(xn+1(_++_>+1>
Tp+2 Tp+1 Tp+1 a3l Tn

From (1) again, we conclude that z,,,1 = x,,2 which is a contradiction.
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Solution 2. The trick is to compare a,,o and a,. Observe that

CL2 :(x1_|_..._|_x 2) i_|_..._|_ 1
2 " T Lp42

z(x1+~--+xn)<i+---+i)+(xn+1—|—xn+2)< ! + ! >

T T Tni1 Tni2

+ (Tps1 + Tny2) i+---+i
) i)

X1 T,

+

+<x1+.“+$n)<$+1 Tn+2
n n

, 1 1
> a;, + (Tpy1 + Tnio) — + X
n+ n+

1 1 1 1
+2 (‘/L‘n+1+mn+2) + ($1++l’n) —_— + -+ —
Tnt1 Tp42 T Ty

1

1 1 1
= ai + (Tpg1 + Tpgo) ( + ) + 2an\/(xn+1 + Zpi2) (

)
Tn+1 Tn42 Tn+1 xn+2>

where we used AM-GM to obtain the inequality. Furthermore, we have

1 1
(Tnt1 + Tnya) ( + ) > 4

Tn+1 Tn42

because x,, 11 # T,42 by assumption. Therefore, it follows that
a’ , > a’ + 4+ 4da, = (a, +2)°
Because a,,,2 and a,, are both positive integers, we conclude that
Opio = Ay + 3.

A simple induction gives asgp.1 = 3k + a; for every k > 0. Since a; = 1, it follows that
agk+1 = 3k + 1. We get the desired conclusion for k£ = 1011. ]

Comment 1. A similar argument as in Solution 2 shows that as > 3 and a9, = 3k for every k > 1.
Actually, these lower bounds on a,, are sharp (at least for n < 2023). In other words, there exists a

sequence of distinct values 1, ..., T9go3 > 0 for which
o — 3”—2_1 if n is odd,
o 37” if n is even,
for n = 1,...,2023. The value of 1 can be chosen arbitrarily. The next values can be obtained

inductively by solving the quadratic equation

< 1 o1
a2 =a2+1+ (le> + (Z x) Tnil
=1

Tn+1 = L

for x,,41. Computation gives, for n > 1,

3n
2(Z %)
6n+14+34/n(3n+2)

1
2(Z80 37)

One can check (with the help of a computer), that the values 1, ..., x2023 obtained by choosing z1 = 1
and “+” every time in the odd case are indeed distinct.

if n is even,

Tn+1 =

if n is odd.

It is interesting to note that the discriminant always vanishes in the even case. This is a consequence
of an+1 = an + 1 being achieved as an equality case of AM-GM. Another cute observation is that the
ratio xo/z1 is equal to the fourth power of the golden ratio.
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Comment 2. The estimations in Solutions 1 and 2 can be made more efficiently if one applies the
following form of the Cauchy—Schwarz inequality instead:

V(@ +b)(c+d) = ac+Vbd (2)

for arbitrary nonnegative numbers a, b, ¢, d. Equality occurs if and only ifa:c=b:d = (a+b) : (c+d).
For instance, by applying (2) toa =21+ 4+ p, b = xpy1, ¢ = i +---+ ﬁ and d = —— we get

Tn+1
1 1 1
it = A (@14 Tt apa) | .
1 n n+

1 1 1
= (:c1+---+33n) $—+~-+; + xn+1~r=an+1.
1 n n+1

A study of equality cases show that equality cannot occur twice in a row, as in Solution 1. Suppose
that an+1 = ap + 1 and ay42 = an41 + 1 for some index n. By the equality case in (2) we have

1+ -+ Tn) + Tnta Tntl
(1 1”) n — = 1/; » = xiﬂ because an,+1 = ap + 1,
e ) "
<$1 xn) Ln+1
and
T1+ -+ Ty + Tpaa Tn+2 2
- : T " s~ T, o because api2 = any1 + 1.
e+ — 4+ — n
T In Tn+1

The left-hand sides are the same, so z,+1 = T,1+2, but this violates the condition that z,,1 and x,2
are distinct.
The same trick applies to Solution 2. We can compare a,, and a,2 directly as

1 1 1 1
Ap4+2 = (:c1+---+$n+$n+1+xn+g) x——i-'--—k;—kx +x
1 n n+1 n+2

1 1 1 1
\/(:r1+--~+mn)<+-~~l—)+\/(xn+1+xn+2)-< + )
T1 Tn Tn+1 Tn+42

1 1
= an + (xn+1 + xn+2) : P + P
n n

= an + 2.

A\

In the last estimate, equality is not possible because z,+1 and xz,49 are distinct, so a,+2 > a, + 2 and
therefore ap42 = an + 3.
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Let R.( be the set of positive real numbers. Determine all functions f: R.y — R.q
such that

z(f(@) + f(v) = (f(f(2) +y)f(»)

for every x,y € R.y.
(Belgium,)

Answer: All functions f(x) = £ for some ¢ > 0.

Solution 1. Let f: R.y — R.g be a function that satisfies the inequality of the problem
statement. We will write f*(x) = f(f(--- f(z)---)) for the composition of f with itself k
times, with the convention that f°(z) = x. Substituting y = z gives

x> f(x).

Substituting = f(y) instead leads to f(y) + f2(y) =y + f3(y), or equivalently

Fw) = Py)=y— ).

We can generalise this inequality. If we replace y by f"!(y) in the above inequality, we get

i) = "2 y) = " Hy) = ),

for every y € Ro¢ and for every integer n > 1. In particular, f"(y) — f"2(y) =y — f*(y) = 0
for every n > 1. Hereafter consider even integers n = 2m. Observe that

m—

— " (y) Z (f*(y) = 772 () = m(y — ().

Since f takes positive values, it holds that y — f>™(y) < y for every m = 1. So, we have proved
that y > m(y — f2(y)) for every y € Ry and every m > 1. Since y — f?(y) = 0, this holds if
only if

fly) =
for every y € R.y. The original inequality becomes

zf(x) = yf(y)

for every x,y € R.. Hence, xf(z) is constant. We conclude that f(x) = ¢/x for some ¢ > 0.

We now check that all the functions of the form f(z) = ¢/x are indeed solutions of the
original problem. First, note that all these functions satisfy f(f(z)) = ¢/(¢/x) = x. So it’s
sufficient to check that zf(x) = yf(y), which is true since ¢ > c.

Solution 2. Let f: R.y — R.g be a function that satisfies the inequality of the problem
statement. As in Solution 1, we prove that

" y) = " (y)

for every y € R.y and every n > 0. Since f takes positive values, this implies that

yfw) = fw)fy) = P fy) =

In other words, yf(y) = f"(y) f" ™ (y) for every y € Ry and every n > 1.
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We replace = by f"(x) in the original inequality and get

fy) = f(x) " (x)
f() '

fr(x) — () = 2

Using that = f(z) = f"(x)f""(x), we obtain

fn(l') . fn+2(l') > yf(y> - l’f(l')

fy)
for every n > 0. The same trick as in Solution 1 gives
m—1
x>a— f2(z) = Z (f2(z) — f2*2(2)) = m - yf(y) —xf(z)
i=0 f(y)

for every z,y € R.y and every m > 1. Possibly permuting x and y, we may assume that
yf(y) — xf(z) = 0 then the above inequality implies zf(z) = yf(y). We conclude as in
Solution 1.
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Let aq,as, ..., ass be positive integers such that
® a1,ds,...,0a90093 IS a permutation of 1,2,...,2023, and
o |CL1 — CL2|, |CL2 — CL3|, ce |CL2()22 — (12023| is a permutation of 1, 2, ce ,2022

Prove that max(al, a2023) > 507.
(Australia)

Solution. For the sake of clarity, we consider and prove the following generalisation of the
original problem (which is the case N = 1012):

Let N be a positive integer and aq, as, ..., asny_1 be positive integers such that
® ay,a9,...,0oNy_1 i8S a permutation of 1,2,...,2N — 1, and
o |a; —as|,|ag —as|, ..., |asn_2 — agn_1] is a permutation of 1,2,... 2N — 2.

N1,

Then a; + asy—1 = N + 1 and hence max(al,agN,l) > [ 5

Now we proceed to the proof of the generalised statement. We introduce the notion of score
of a number a € {1,2,...,2N — 1}. The score of a is defined to be

s(a) :==la — NJ.
Note that, by the triangle inequality,
la —b] <|a— N|+|N —b| = s(a) + s(b).
Considering the sum |a; — ag| + |ag — as| + - - + |agn—_2 — agn—_1], we find that
(N —=1)(2N —1) = |a; — as| + |ag — a3| + -+ + |aan—2 — aon—_1]

< 2(s(ar) + s(as) + -+ + s(aan-1)) — (s(ar) + s(aan-1))
=2N(N —1) — (s(a1) + s(aan—1)).

For the last equality we used that the numbers s(a), s(az), ..., s(asny_1) are a permutation of
0,1,1,2,2,....N —1,N — 1.
Hence, s(ay) + s(agn—1) < 2N(N —1) = (N — 1)(2N — 1) = N — 1. We conclude that

(N — al) + (N — CL2N71) < S(Cll) + S(CL2N71) < N — 1,
which implies a1 + asy_1 = N + 1.

Comment 1. In the case N = 1012, such a sequence with max(al, a2023) = 507 indeed exists:

507,1517,508, 1516, . ..,1011, 1013, 1012, 2023, 1, 2022, 2, . . . , 1518, 506.

For a general even number N, a sequence with max (al, as N—l) = [TH] can be obtained similarly. If
N > 3 is odd, the inequality is not sharp, because max(aj,asn_1) = % and a1 + asy_1 = N +1
together imply a1 = aon_1 = %, a contradiction.
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Comment 2. The formulation of the author’s submission was slightly different:

Author’s formulation. Consider a sequence of positive integers a1, as, as, ... such that
the following conditions hold for all positive integers m and n:

® 42023 = ap + 2023,
o If |apt1 — an| = |am+1 — am|, then 2023 | (n —m), and

e The sequence contains every positive integer.

Prove that a; > 507.

The two formulations are equivalent up to relatively trivial arguments. Suppose (a,,) is a sequence
satisfying the author’s formulation. From the first and third conditions, we see that aq,...,asgs is
a permutation of 1,...,2023. Moreover, the sequence |a; — a;41| for i = 1,2,...,2022 consists of
positive integers < 2022 and has pairwise distinct elements by the second condition. Hence, it is a
permutation of 1,...,2022. It also holds that a; > agg23, since if a1 < agoes then |ages — ag23| =
12023 + a1 — agoes| < 2022, which should be equal to |a; — a;+1] for some 1 < i < 2022, contradicting
the second condition. This reduces the problem to the Shortlist formulation.

Conversely, if the numbers aq, ..., a3 satisfy the conditions of the Shortlist formulation, then,
after possibly reversing the sequence to ensure a; > a9ggo3, the sequence can be extended to an infinite
sequence satisfying the conditions of the author’s formulation.
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- Let k£ > 2 be an integer. Determine all sequences of positive integers aq, as, ... for
which there exists a monic polynomial P of degree k with non-negative integer coefficients such
that
P(an) = An4+10n+2 * * * Qp+k
for every integer n > 1.
(Malaysia)

Answer: The sequence (a,) must be an arithmetic progression consisting of positive integers
with common difference d > 0, and P(x) = (x +d) - - (z + kd).

Common remarks. The following arguments and observations are implicit in the solutions
given below.

Suppose the sequence (a,,) is an arithmetic progression with common difference d = 0. Then
it satisfies the condition with

P(z) = (z+d)-- (z + kd).

This settles one direction. Now suppose (a,) is a sequence satisfying the condition. We will
show that it is a non-decreasing arithmetic progression.

Since P(x) has non-negative integer coefficients, it is strictly increasing on the positive real
line. In particular, it holds that, for any positive integer x,y,

P(z) < Ply) <= z<uy.

Furthermore, if the sequence (a,,) is eventually constant, then P(z) = 2* and the sequence
(a,) is actually constant. Indeed, if P(x) were not the polynomial ¥, then P(a,) = apy1 - ik
cannot be satisfied for n such that a, = -+ = a,,%. By a descending induction, we conclude
that (a,) is constant. Thus we can restrict to the case (a,) is not eventually constant.

Solution 1. We assume that (a,) is not eventually constant.

Step 1. The first goal is to show that the sequence must be increasing, i.e. a, < a,,; for all
n = 1.
First, by comparing the two equalities
P(an) = Op410n42 " - Apik,
P<an+1> = Anp4+2 - Ap4-kAn4k+1,

we observe that

an < Any1 == Play) < Plapnsy1) <= Gng1 < Gngir,s (1)
p > Qp41 Aaand P(an) > P(an+1) A Ap+1 = Antk+1, (2)
Ap = Ani1 — P<an) = P(an+1) =  Op41 = Qniyk+1- (3)

Claim 1. a, < a,41 for all n > 1.

Proof. Suppose, to the contrary, that a,)—1 > @y, () for some n(0) > 2. We will give an infinite
sequence of positive integers n(0) < n(1) < --- satisfying

An(i)—1 > Gpgy and Ap) > Qp(isl)-

Then ay, (o), an(1), Gn(2), - - - is an infinite decreasing sequence of positive integers, which is absurd.

We construct such a sequence inductively. If we have chosen n(7), then we let n(:+1) be the
smallest index larger than n(i) such that a,) > a,@+1). Note that such an index always exists
and satisfies n(7) + 1 < n(i+1) < n(i) + & because an(y > an)+x by (2). We need to check that
An(i+1)—1 > An(i+1)- This is immediate if n(i+1) = n(i) +1 by construction. If n(i+1) > n(i)+2,
then a,(i11)-1 = an() by minimality of n(i + 1), and s0 ani11)—1 = Ang) > Anit1)- O
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We are now ready to prove that the sequence a,, is increasing. Suppose a,, = a,41 for some
n > 1. Then we also have a,,1 = a,1r+1 by (3), and since the sequence is non-decreasing we
have a,, = Gp41 = Qpia = -+ = Apips1. We repeat the argument for a, r = a,, 111 and get
that the sequence is eventually constant, which contradicts our assumption. Hence

Gy < Gpyq foralln > 1.

Step 2. The next and final goal is to prove that the sequence a,, is an arithmetic progression.
Observe that we can make differences of terms appear as follows

P(an) = Op410p42 " " - Apik
= (an + (an+1 - an)) (an + (an+2 - an)) e (an + (an+k - an))'

We will prove that, for n large enough, the sum

(Ani1 = an) + (@ny2 — an) + - + (Gnik — an)

k—1

is equal to the coefficient b of the term x*~" in P. The argument is based on the following

claim.

Claim 2. There exists a bound A with the following properties:

1. If (¢4, ..., ¢k) is a k-tuple of positive integers with ¢; + - - - 4+ ¢, > b, then for every x > A
we have P(x) < (x 4+ ¢1)(z + ¢2) -+ - (T + cx).

2. If (¢1,...,cx) is a k-tuple of positive integers with ¢; + -+ - + ¢ < b, then for every z > A
we have P(x) > (z + ¢1)(z + ¢2) - -+ (¢ + ).

Proof. 1t suffices to show parts 1 and 2 separately, because then we can take the maximum of
two bounds.
We first show part 1. For each single (¢, ..., ¢) such a bound A exists since

P@)—(x+c)(w+c) - (x+cp)=(b—(c1 + - +cp))r* ! + (terms of degree < k — 2)

has negative leading coefficient and hence takes negative values for x large enough.

Suppose A is a common bound for all tuples ¢ = (¢, ..., cx) satisfying ¢; + -+ =0+ 1
(note that there are only finitely many such tuples). Then, for any tuple ¢ = (¢}, ..., ¢},) with
¢y + -+ ¢}, > b, there exists a tuple ¢ = (¢1,...,¢) withe; ++--+ ¢ =b+ 1 and ¢, > ¢;, and
then the inequality for ¢ follows from the inequality for c.

We can show part 2 either in a similar way, or by using that there are only finitely many
such tuples. O

Take A satisfying the assertion of Claim 2, and take N such that n > N implies a, > A.
Then for each n > N, we have

(CLn+1 - an) oot (anJrk: - an) =b.

By taking the difference of this equality and the equality for n + 1, we obtain

An+k+1 — Apy1 = k(an-i-l - an)
for every n > N.

We conclude using an extremal principle. Let d = min{a,,; — a, | n = N}, and suppose it
is attained at some index n > N. Since

k
kd = ]f((ln+1 - an) = Qp4+k+1 — An4+1 = Z(an+i+1 - an+i)
i=1

and each summand is at least d, we conclude that d is also attained at n + 1,...,n + k, and
inductively at all n’ = n. We see that the equation P(z) = (x + d)(x + 2d) - - - (x + kd) is true
for infinitely many values of = (all a,s for n’ > n), hence this is an equality of polynomials.
Finally we use (backward) induction to show that a,.; — a, = d for every n > 1.
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Solution 2. We assume that (a,) is not eventually constant. In this solution, we first prove
an alternative version of Claim 1.

Clatm 3. There exist infinitely many n > 1 with
ap < min{an1, ..., Qpyk}-

Proof. Suppose not, then for all but finitely many n > 1, it holds that a,, > min{a, 1, ..., a,ix}-
Hence for all large enough n, there always exist some 1 < [ < k such that a,, > a,4;. This
induces an infinite decreasing sequence a,, > a,4;, > any, > -+ - of positive integers, which is

absurd. ]

We use Claim 3 to quickly settle the case P(z) = z*. In that case, for every n with

Un < MiN{dyy1,. .., Qnik}, SINCE Apiy - Apyp = aF, it implies a, = @py1 = -+ = apyp. This
shows that the sequence is eventually constant, which contradicts our assumption.
From now on, assume
P(z) > 2" for all 2 > 0.

Claim 4. For every M > 0, there exists some N > 0 such that a,, > M for all n > N.

Proof. Suppose there exists some M > 0, such that a, < M for infinitely many n. For each ¢
with a; < M, we consider the k-tuple (a;i1,...,a;4x). Then each of the terms in the k-tuple is
bounded from above by P(a;), and hence by P(M) too. Since the number of such k-tuples is
bounded by P(M)* we deduce by the Pigeonhole Principle that there exist some indices i < j
such that (ait1,...,@i+k) = (@j41,-..,a54k). Since a, is uniquely determined by the & terms
before it, we conclude that a;yr+1 = @j1,+1 must hold, and similarly a;4; = a;4; for all { > 0,
so the sequence is eventually periodic, for some period p = j — 1.

Take K such that a, = a,4, for every n > K. Then, by taking the products of the
inequalities

a¥ < Pla,) = Gny1- - Qnyk

for K <n < K+ p—1, we obtain

K+p—-1 K+p—-1
k
H a, < H Ap41 - Antk
n=K n=K
K+p k
_ 2 k—1 k-1 2
= AK+10K 42 Qg4 1_[ Un | Ogypi1 " Ok 4prk—20K+pt+k—1
n=K+k
K+p—1 k
= H an (by periodicity),
n=K
which is a contradiction. ]

Write P(x) = 2% + b2~ + Q(x), where Q(z) is of degree at most k — 2. Take M such that
x > M implies 27! > Q(x).
Claim 5. There exist non-negative integers by, - - , by such that P(x) = (z + by) -+ (x + by),
and such that, for infinitely many n > 1, we have a,,.; = a,, + b; for every 1 <i < k.

Proof. By Claims 3 and 4, there are infinitely many n such that
a, > M and a, < min{a,11,..., 01k}
Call such indices n to be good. We claim that if n is a good index then

max{ani1,...,0nk} < ap + b
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Indeed, if a,.; > a, + b+ 1, then together with a, < min{a,1,...,a,.1} and a** > Q(a,),
we have
a” + (b+1a"t > af +ba' + Q(an) = Plan) = (an + b+ 1)a ™,

a contradiction.

Hence for each good index n, we may write a,; = a, + b; for all 1 < ¢ < k for some
choices of (by,...,b;) (which may depend on n) and 0 < b; < b. Again by Pigeonhole Principle,
some k-tuple (by,...,br) must be chosen for infinitely such good indices n. This means that
the equation P(a,) = (a, + b1) -+ (a, + by) is satisfied by infinitely many good indices n. By
Claim 4, a, is unbounded among these a,’s, hence P(z) = (x + by)--- (2 + bg) must hold
identically. ]

Claim 6. We have b; = tb; for all 1 <1 < k.

Proof. Call an index n excellent if a,; = a, + b; for every 1 < i < k. From Claim 5 we know
there are infinitely many excellent n.

We first show that for any pair 1 < ¢ < j < k there is 1 < [ < k such that b; = b; + 0;.
Indeed, for such i and j and for excellent n, a,, + b; (which is equal to a,;) divides P(a,+;) =
Hf;l(an + b; + b;), and hence divides ]_[le(bi + by — b;). Since a, + b; is unbounded among
excellent n, we have [[r_,(b; + by — b;) = 0, hence there is [ such that b; = b; + b;.

In particular, b; = b; + b, = b;, i.e. (by, ..., b;) is non-decreasing.

Suppose by = 0 and n is an excellent number. In particular, it holds that a, = a,.1.
Moreover, since

Anikr1P(an) = any1 - Gpinyr = anp1 Plans),

we have a,, = ap+1 = Apypry1, which divides P(a,;) = Hf;l(an + b; + b) for each 1 < i < k.
Hence a,, divides ]_[le(bi + b;). By the same reasoning, we have b; + b, = 0 for some [, but since
b;,b; = 0 we obtain b; = 0 for each 1 <7 < k.

Now suppose b; = 1. Then, for each 1 <i < j <k, we have b; —b; = by = b; > 1, hence
(b1, ...,by) is strictly increasing. Therefore, the k — 1 elements by < b3 < --- < by, are exactly
equal to by + by < --- < by + bi_1, since they cannot be equal to b; + b. This gives b; = ib; for
all 1 <17 < k as desired. H

Claim 6 implies P(x) = (z + d)(x + 2d) - - - (x + kd) for some d > 1, and there are infinitely
many indices n with a,4; = a, + id for 1 < i < k. By backwards induction, P(a,_1) =
Gy Qpyp—1 implies a,,_1 = a,, —d, and so on. Thus ay,...,a, forms an arithmetic progression
with common difference d. Since n can be arbitrarily large, the whole sequence is an arithmetic
progression too, as desired.

Comment 1. A typical solution would first show some kind of increasing property (assuming a,, is
not constant), and then use that property to deduce informations on the numbers a,,; —a, (1 <i < k)
and/or on the polynomial P.

Solution 1 shows a strict one: a, < an4+1 (arguments after Claim 1), which makes the latter
part easier. Solution 2 (Claims 3 and 4) shows only weaker increasing properties, which require more
complicated /tricky arguments in the latter part but still can solve the problem.

Comment 2. It would be interesting to sort out the case when P can take negative integer coefficients,
or (an) is just an integer sequence. Then a decreasing arithmetic progression is possible too, yet that
is not the only possibility. There exist bounded examples such as 1, —1,1, —1,... with P(z) = —22, or
0,1,—1,0,1,—1,... with P(x) = 22—1. If furthermore P is allowed to be non-monic, then the situation
is even more unclear. For instance, the sequence 1,2,4,8, ... works for the polynomial P(z) = 8z2.
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- Let N be a positive integer. Prove that there exist three permutations aq, as, ..., an;
bi,ba,...,by; and ¢y, co,...,cy of 1,2,..., N such that

[Var + Vo + /e = 2VN | < 2023

for every k =1,2,..., N.
(China)

Solution 1. The idea is to approximate the numbers v/1,4/2,...,v/N by the nearest integer
with errors < 0.5. This gives the following sequence

1,1,2,2,2,2,3,3,3,3,3,3.4,. ...

More precisely, for each k > 1, we round vk2 —k + 1,...,vVk% + k to k, so that there are 2k
copies of k.

Step 1. We first consider the easier case when N has the form
N =m(m+1).

In this case, the numbers v/1,4/2,...,v/N are approximated by the elements of the multiset
{1x2,2x4,3%6, - -sMx2m}. Let T,, denote “half of” the multiset, i.e.

Tm = {1><1>2><273><37 cee 7m><m}-

We will prove by induction that there exists three permutations (u), (vx), and (wy) of the
elements in the multiset 7,,, such that u, + vy +wy = 2m+1is constant for k = 1,2, ..., M

When m = 1, take 1 + 1+ 1 = 3. When m = 2, take (1,2,2) +(2,1,2) + (2,2,1) = (5,5, 5).
Suppose that we have constructed three permutations (ug), (vg), and (wg) of T,,—1 satisfying
m(m—1

5— - For T,,,, we note that

ug + v + wp =2m — 1 for every k =1,2, ...,
Tm = Tmfl ] {mxm}7

and also
T = T + 1) {l,2,...,m}. (1)

Here T,,—1 + 1 means to add 1 to all elements in 7,,_;. We construct the permutations (u},),
(vy,), and (w},) of T, as follows:

o Forkz1,2,...,m(7g_1),wesetu§€=uk, v, =vp + 1, wj, = wy, + 1.

° Fork‘zM—Frwi’ch?“:1,2,...,m,wesetu§€=m,v;€=r,w§€=m+1—r.

It is clear from (1) that (u}), (v}.), and (w},) give three permutations of T,,, and that they
m(m+1)
5

satisfy uj, + v, + w), = 2m + 1 for every k = 1,2,.. .,

The inductive construction can be visualised by the 3 x W matrix
Uy ce um(m,l)/g m ... m
U1+1 Um(mfl)/z—i-l 1 ... m s
w+1 ... wm(m_l)/g—i—l m ... 1

in which the three rows represent the permutations (u},), (v},), (w},), and the sum of the three
entries of each column is 2m + 1.
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Thus, when N = m? + m, we can construct permutations (ay), (by), and (c) of 1,2,..., N
such that
2m 41— 1.5 < Jag + Vb + &k < 2m + 1 + 1.5. (2)
This gives

[Var + Vb + /e — 20N | < 25 < 2023,
where we used that —1 < 2m — 24/m? + m < 0 for positive m.
Step 2. We now proceed to the general case. Let m be such that
m(m+1) <N < (m+1)(m+2).

Write N = m(m + 1) 4+t for some ¢t € {0,1,...,2m + 1} and let

b |2

We will make use of the following inequalities below:
N>m? N<(m+2)? t<2m+1, L+1>4N/9, L<4N/9.

As above, we construct three permutations (ay), (bx), and (¢x) of 1,2, ..., m(m+1) satisfying
(2). Now we construct the three required permutations (Ay), (Bg), and (Cy) of 1,2,..., N as
follows:

For k =1,2,...,m(m+ 1), if a, < L, take Ay = a, and if ay > L, take Ay = a; + t. For
k=m(m+1)+rwithr=1,2,....t set Ay = L +r. Define the permutations (By) and (Cj)
similarly. Now for k = 1,2,...,m(m + 1), we show 0 < /A, — Var < 2. The lower bound is
obvious. If m < 1, then N < 5 and hence v/A;, — Vag < V5 —+/1<2. If m> 2, then

A — ay t 2m + 1

VAL — Vax = < <
£V VALt ya,  2YVL+1 - im

< 2.

We have similar inequalities for (By) and (Cj). Thus
2N =45 <2m+1—-15< /A +VBe +VCr <2m+ 1+ 1.5+ 6 < 2v/N + 8.5.
For k=m?+m+1,...,m?>+m +t, we have
2N < 3VL + 1< /Ay + /By + v/ Crp <3VL +t < VAN + 9t < 2VN + 8.5.

To sum up, we have defined three permutations (Ag), (Bg), and (Cy) of 1,2,..., N, such

that
‘«/Ak +\/Bi +/Cy — 2\/N‘ < 8.5 < 2023.
holds for every k =1,2,..., N. OJ

Solution 2. This is a variation of Solution 1 that uses induction for Step 2.
Let n be an integer satisfying 0 < n < m + 1 and define the multiset 7}, ,, by

Tm,n = {1><1a 2><273><37 vy M, (m + ]-)Xn}'

In other words, T}, 0 = Tin, Tinn = T b {(m + 1)xn} and Ty me1 = Thpt1, where T;, is the set
defined in Solution 1.
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Claim. There exist three permutations (ug), (v), (wy) of T, ., such that

up +vp +wp, =2m+ 1 (n=0),
up + v +wr € {2m+1,2m+2,2m + 3} (1 <n<m),
up + v, Fwr =2m+ 3 (n=m+1).

Proof. We proceed by induction on m. If n = 0 or n = m + 1, the assertion can be proved as
in Solution 1. If 1 < n < m, we note that

Ton = T U M men), (M + 1)} = (T + 1) 0 {1,2,... ,m}.

From the hypothesis of induction, it follows that we have three permutations (uy), (vx), (wy) of
Ton—1, satistying uy +vp +wy, € {2m—1, 2m, 2m+1} for every k. We construct the permutations
(u},), (vy,), and (wy,) of T}, ,, as follows:

° Forkz1,2,...,w+n,wesetu;=uk,Ujfzvk—i—l,andw;c:wk—l—l.

oFork=w+n+rwithr=1,2,...,m, we set uj, = m if 1 < r < m —n while
u,=m+1lifm—-n+1<r<m, v, =r,andw, =m+1-r.

It is clear from the construction that (u}), (v;,), and (wj,) give three permutations of T}, .,

and they satisfy u), + v}, +w}, € {2m + 1,2m + 2,2m + 3} for every k = 1,2, ..., w +n.
Again, we can visualise the construction using the matrix
Uy Un(m—1)/24n m ... m m+1 ... m+1
v+l oo Ut 1 0 m . O
w1+1 wm(m,l)/g+n+1 mo ... ... 1

In general, we have m(m+1) < N < (m+1)(m+2) for some m > 0. Set N = m(m+1)+¢
for some ¢ € {0,1,...,2m + 1}. Then the approximation of {+/1,4/2,...,v/N} by the nearest
integer with errors < 0.5 is a multiset

{1><27 254, ... s TMx 2my (m + l)xt} = Tm,nl (] Tm,nz
with ny = [t/2] and ny = [t/2].

Since 0 < n; < ny < m + 1, by using the Claim we can construct permutations (ay), (by),
and (ci) to satisfy the following inequality:

2m +1— 1.5 < \/ar + \V/bg +/Ck < 2m + 3+ 1.5.
Since m < \/N<m+2, it follows that
2N —4.5 <2m+1— 1.5 < ag + b + &k <2m + 3+ 1.5 < 2VN + 4.5,

and so

’«/AH«/BH\/C —NN’ <45 < 2023, =
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Solution 3. This solution is based on the geometrical insight of equilateral triangles.

Step 1. We first consider the easier case of triangle numbers

m(m + 1)

—

As shown in the following picture, consider the triangular shaped lattice points inside an equi-
lateral triangle ABC with a total of N points. The lattice is built in a way that the ¢** row
has exactly ¢ points for each ¢ = 1,2,..., m. Rows are numbered in three different ways, one
for each vertex.

Each point Py in the triangular lattice is labelled with a triple of integers (ag, bg,cx) as
follows. The first coordinate is called the A-coordinate, and so on for B,C. To define the
A-coordinate, denoted W, (e), first label the lattice points by 1,2, 3, ... starting with the point
closest to A and then going down the rows with the rule that within a row, the labelling is
from left to right (see right picture). The B-coordinate, denoted W(e), is defined by rotating
the A-coordinate counterclockwise by 120°. The C-coordinate, denoted W,(e), similarly, by
rotating the A-coordinate counterclockwise by 240°.

Assume that a point P lies in the £, row from the vertex A, in the ¢, row from the vertex
B, and in the £.'" row from the vertex C. Note that ¢, is proportional to the height of A in
the triangle, minus the height of P. Since inside an equilateral triangle, the sum of the lengths
of the heights from a point to the three sides is independent of the point, we must have

N =

by + 0y + L. =2m+1=+8N + 1.

Since there are exactly 14+2+---+/( = EH) points in the first ¢ rows, the A-labeling W,(P)

of the point P satisfies

WJA@%(PK

(za _ %)2 < WL (P) < <ea ; %)2

Taking the cyclic sum gives

lo(ly + 1)
5 )
In paticular,

‘\/QWa(P)-i—\/QWb ) + A 2W(P) — (b + by + £.)| <

and thus

3 1 32

2 2 4

Step 2. Now, for a general positive integer IV, there exists a positive integer m such that

—m(mQ_ Ditene —m<m2+ Y.

‘VWQ(PHWVI)( S VWLP) - 24N+ ¢ <
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Write N = % —t with t € {0,1,...,m — 1}. We modify the above construction for
@ points into a construction for N points as follows. We remove ¢ arbitrary points from
the m'™" row (namely the bottom row) of the triangular lattice. The remaining triangular lattice
has w —t = N points, and we assign their A-, B-, and C-coordinates as before (in the
same order, yet skipping over the points that are removed so that the coordinates exactly form
permutations of 1,2,...  N).

For each point P in the triangular lattice (that was not removed earlier), suppose that it is in
the £, ¢, and ¢,** row when viewed from A, B, and C, respectively. Now the A-coordinates

W, (P) still satisfies

Llla 1) | o W, (P) < bllat 1)
2 2
The B-coordinate W, (P) satisfies
(fb — 1)(& — 2) fb(fb + 1)

+1<Wy(P) <

2 2 ’

because, viewing from point B, we have removed either 0 or 1 point from each row, and the
first £, — 1 rows have at least 0+ 1+---+ ({, —2) = W points left. For the same reason,
the C-labeling W.(P) satisfies

(50 _ 1)(66 - 2)
2

+1<W,(P) < £(£Q_+1)

From this, we deduce that
1 L <A2W,(P) <, + L
a 2 a a 27
3 1
Eb_ﬁ <\/2Wb(P) <£b+§,
1
EC_;<'\/2WC(P) <£c+§-

Combining all above with the inequalities 2m—1 < 2v2N < 2m+1 and {,+ 0, +{. = 2m+1,
we deduce that

2V2N — ; <(2m+1)— g < A/2W,(P) + A/2W,(P) + A/2W,(P)
7

3

Therefore, for each point P, we have

IV Wa(P) + /Wy (P) + /We(P) — 2V N| < g : \/% < 2.5 < 2013.

We may finally order of the N points in an arbitrary way. Then the A-labelings W, (e) give
the permutation ay, ...,ay, the B-labelings W (e) give by,...,by, and the C-labelings W, (e)
give ¢1,...,CN-

For each £ =1,2,..., N, we have

|var + /b + er — 2VN| < 2.5 < 2023. ]
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Comment. We can make the same argument as in Solution 3 without using geometry or diagram
instead using barycentric coordinates in integers and lexicographic order.
For N = m(";rl), consider a set

X ={(z,y,2)eZ®|0<z,y,z2<m—-1,x+y+z=m—1}.
and the lexicographic order of X, i.e.

x> a' or
(r,9,2) > (2/,y,2)) = {x=2"and y > ¢/ or
z=2x2"and y =9y and 2z > 7.
Then for an element Qy = (xk, Yk, 2k)
e Define W,(Q}) so that (2, yk, 21) is the W, (Qp)™" biggest element in X.
e Define W3 (Qy) so that (y, 2, 1) is the Wy (Qp )™ biggest element in X’ = {(y, z,2) | (z,v,2) € X}.
e Define W,(Qy) so that (z, xx, yx) is the W,(Qx)™ biggest element in X” = {(z,z,y) | (z,y,2) € X}.

The same argument as in Solution 2 then holds.
Observe that for an element Qp = (x,yk, 2x), it holds that £, = m — x, &, = m — yi, and
be =m — z.
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Combinatorics

Let m and n be positive integers greater than 1. In each unit square of an m x n grid
lies a coin with its tail-side up. A mowe consists of the following steps:

1. select a 2 x 2 square in the grid;
2. flip the coins in the top-left and bottom-right unit squares;
3. flip the coin in either the top-right or bottom-left unit square.

Determine all pairs (m,n) for which it is possible that every coin shows head-side up after a
finite number of moves.

(Thailand)

Answer: The answer is all pairs (m,n) satisfying 3 | mn.

Solution 1. Let us denote by (i, j)-square the unit square in the i*" row and the j*® column.

We first prove that when 3 | mn, it is possible to make all the coins show head-side up. For
integers 1 <i<m—1and 1 < j <n—1, denote by A(7, j) the move that flips the coin in
the (i, j)-square, the (i + 1,7 + 1)-square and the (i, 7 + 1)-square. Similarly, denote by B(i, j)
the move that flips the coin in the (i, j)-square, (i + 1,7 + 1)-square, and the (i + 1, j)-square.
Without loss of generality, we may assume that 3 | m.

Case 1: n is even.

We apply the moves

o A(Bk—2,2]—1) forall 1 < and 1 <[ <

|3
N3

k< ,
e BBk —-121-1)foralll<k<Fand1<I<

o3

This process will flip each coin exactly once, hence all the coins will face head-side up
afterwards.

Case 2: n is odd.
We start by applying

o ABk—2,2l—1)forall 1 <k <

|3

and 1 <1< 24,
e BBk—1,2l—1)foralll1<k<Zand1<l<2?

as in the previous case. At this point, the coins on the rightmost column have tail-side up and
the rest of the coins have head-side up. We now apply the moves

o ABk—2,n—1), A3k —1,n—1) and B(3k —2,n — 1) for every 1 <k < 7.
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For each k, the three moves flip precisely the coins in the (3k — 2, n)-square, the (3k — 1,n)-
square, and the (3k,n)-square. Hence after this process, every coin will face head-side up.

We next prove that mn being divisible by 3 is a necessary condition. We first label the
(1, 7)-square by the remainder of i + j — 2 when divided by 3, as shown in the figure.

2
0
1
2

SN || O

01
11]2
210
01

Let T'(c) be the number of coins facing head-side up in those squares whose label is c.
The main observation is that each move does not change the parity of both 7'(0) — 7'(1) and
T(1) — T(2), since a move flips exactly one coin in a square with each label. Initially, all
coins face tail-side up at the beginning, thus all of 7°(0),7'(1),7'(2) are equal to 0. Hence it
follows that any configuration that can be achieved from the initial state must satisfy the parity
condition of

T0)=T(1)=T(2) (mod 2).

We now calculate the values of T for the configuration in which all coins are facing head-side

up.

e When m =n=1 (mod 3), we have T(0) — 1 = T(1) = T(2) = =2=L.

When m = 1 (mod 3) and n = 2 (mod 3), or m = 2 (mod 3) and n
have T(0) — 1= T(1) — 1 = T(2) = m2=2,

3

e When m =n =2 (mod 3), we have T(0) = T(1) — 1 = T(2) = 221,

3

e When m =0 (mod 3) or n =0 (mod 3), we have T'(0) = T'(1) = T'(2) = ="

3

1 (mod 3), we

From this calculation, we see that T'(0), T'(1) and 7'(2) has the same parity only when mn is
divisible by 3.

Comment 1. The original proposal of the problem also included the following question as part (b):

For each pair (m,n) of integers greater than 1, how many configurations can be obtained
by applying a finite number of moves?

An explicit construction of a sequence of moves shows that 7'(0), 7'(1), and 7'(2) having the same
parity is a necessary and sufficient condition for a configuration to obtainable after a finite sequence
of moves, and this shows that the answer is 272,

Comment 2. A significantly more difficult problem is to ask the following question: for pairs (m,n)
such that the task is possible (i.e. 3 | mn), what is the smallest number of moves required to complete
this task? The answer is:

o 2t if mn is even;

o 2t +2if mn is odd.

To show this, we observe that we can flip all coins in any 2 x 3 (or 3 x 2) by using a minimum of two
moves. Furthermore, when mn is odd with 3 | mn, it is impossible to tile an m x n table with one type
of L-tromino and its 180°-rotated L-tromino (disallowing rotations and reflections). The only known
proof of the latter claim is lengthy and difficult, and it requires some group-theoretic arguments by
studying the title homotopy group given by these two L-tromino tiles. This technique was developed
by J. H. Conway and J. C. Lagarias in Tiling with Polyominoes and Combinatorial Group Theory,
Journal of Combinatorial Group Theory, Series A 53, 183-208 (1990).
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Comment 3. Here is neat way of defining the invariant. Consider a finite field F4 = {0, 1,w,w + 1},
where 1 +1 = w? 4w+ 1 =0 in F4. Consider the set

H = {(i,7)|1 <i<m, 1< j<n, the coin in the (i, j)-square is head-side up}.

and the invariant o
I(H)= ) w'eF,
(i,j)eH

Then the value of I(H) does not change under applying moves, and when all coins are tail-side up, it
holds that I(H) = 0. On the other hand, its value when all coins are head-side up can be computed as

1011) = i Z w1 = (D) (3 w)

i=1 j=1

This is equal to 0 € Fy if and only if 3 | mn.
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Determine the maximal length L of a sequence ay, ..., ar, of positive integers satisfying
both the following properties:

2023
27,

e every term in the sequence is less than or equal to and

e there does not exist a consecutive subsequence a;, @41, . .., a; (where 1 <i < j < L) with
a choice of signs s;, s;41,...,s; € {1,—1} for which

S;; + Si+1Qi41 + -0 + St = 0.
(Czech Republic)
Answer: The answer is [ = 22024 — 1.

Solution. We prove more generally that the answer is 27! — 1 when 220% is replaced by 2* for
an arbitrary positive integer k. Write n = 2*.

We first show that there exists a sequence of length L = 2n— 1 satisfying the properties. For
a positive integer x, denote by vs(z) the maximal nonnegative integer v such that 2V divides x.
Consider the sequence aq, ..., as, 1 defined as

a; = 2k—v2 (@) .

For example, when k£ = 2 and n = 4, the sequence is
4,2,4,1,4,2,4.

This indeed consists of positive integers less than or equal to n = 2*, because 0 < v5(i) < k for
1<i<2M -1,

Claim 1. This sequence aq,...,as,—1 does not have a consecutive subsequence with a choice
of signs such that the signed sum equals zero.

Proof. Let 1 <i < j < 2n — 1 be integers. The main observation is that amongst the integers
hi+1,...,5—1,7,

there exists a unique integer x with the maximal value of wvy(x). To see this, write v =
max(vy(7),...,v(j)). If there exist at least two multiples of 2¥ amongst 7,7+ 1, ..., j, then one
of them must be a multiple of 2°"!, which is a contradiction.

Therefore there is exactly one ¢ < z < j with vy(x) = v, which implies that all terms except
for a, = 2*7" in the sequence

iy Qig1s - -5

are a multiple of 2°=v*!. The same holds for the terms s;a;, Sit1@is1, .- -, sjaj, hence the sum
cannot be equal to zero. H

We now prove that there does not exist a sequence of length L > 2n satisfying the conditions
of the problem. Let aq,...,a; be an arbitrary sequence consisting of positive integers less than
or equal to n. Define a sequence s1, ..., sy, of signs recursively as follows:

e when sja; + -+ s;_1a;_1 <0, set s; = +1,

e when sja; + -+ + s;_1a;,_1 = 1, set s; = —1.
Write
i
b; = Z S;a; = S1a1 + - -+ S;a4,
j=1
and consider the sequence

Ozbo,bl,bg,...,bL.
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Claim 2. All terms b; of the sequence satisfy —n + 1 < b; < n.

Proof. We prove this by induction on . It is clear that by = 0 satisfies —n + 1 < 0 < n. We
now assume —n + 1 < b;,_; < n and show that —n + 1 < b; < n.

Case 1: —n +1 < b;_; <0.

Then b; = b;_1 + a; from the definition of s;, and hence

—n—i—lébi,l<b¢,1+ai<bi,1+n<n.

Case 2: 1 < b;_; <n.

Then b, = b;_1 — a; from the definition of s;, and hence
—n+1<b_1—n<b_1—a; <b_1<n.

This finishes the proof. ]

Because there are 2n integers in the closed interval [—n + 1,n] and at least 2n + 1 terms in
the sequence by, b, ...,by (as L+ 1 = 2n + 1 by assumption), the pigeonhole principle implies
that two distinct terms b;_1,b; (where 1 < ¢ < j < L) must be equal. Subtracting one from
another, we obtain

SiCLZ'—F"'-i-SjCLj ij—b¢,1 =0

as desired.
Comment. The same argument gives a bound L < 2n — 1 that works for all n, but this bound is

not necessarily sharp when n is not a power of 2. For instance, when n = 3, the longest sequence has
length L = 3.
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Let n be a positive integer. We arrange 1 + 2 + --- + n circles in a triangle with n
rows, such that the i*" row contains exactly i circles. The following figure shows the case n = 6.

In this triangle, a ninja-path is a sequence of circles obtained by repeatedly going from a
circle to one of the two circles directly below it. In terms of n, find the largest value of k such
that if one circle from every row is coloured red, we can always find a ninja-path in which at

least k of the circles are red.
(Netherlands)

Answer: The maximum value is k = 1 + |log, n|.

Solution 1. Write N = |log, ] so that we have 2V <n < 2NVt — 1.
We first provide a construction where every ninja-path passes through at most N + 1 red
circles. For the row i = 2% + b for 0 < a < N and 0 < b < 2%, we colour the (2b + 1) circle.

Then every ninja-path passes through at most one red circle in each of the rows 2 2% +
1,...,29"1 — 1 for each 0 < a < N. It follows that every ninja-path passes through at most
N + 1 red circles.

We now prove that for every colouring, there exists a ninja-path going through at least N +1
red circles. For each circle €', we assign the maximum number of red circles in a ninja-path
that starts at the top of the triangle and ends at C.

Note that

e if C' is not red, then the number assigned to C' is the maximum of the number assigned
to the one or two circles above C, and

e if C' is red, then the number assigned to C' is one plus the above maximum.
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Write vy, ..., v; for the numbers in row ¢, and let v,, be the maximum among these numbers.
Then the numbers in row ¢ + 1 will be at least

U1y -3 Um—1,Um, Um; Um41, - -, Ui,

not taking into account the fact that one of the circles in row 7 4+ 1 is red. On the other hand,
for the red circle in row ¢ + 1, the lower bound on the assigned number can be increased by 1.
Therefore the sum of the numbers in row ¢ + 1 is at least

(v +--+v) +u, + L

Using this observation, we prove the following claim.

Claim 1. Let o} be the sum of the numbers assigned to circles in row k. Then for 0 < j < N,
we have 95 = j -2/ + 1.

Proof. We use induction on j. This is clear for 7 = 0, since the number in the first row is always
1. For the induction step, suppose that gy > j - 27 + 1. Then the maximum value assigned to
a circle in row 27 is at least j + 1. As a consequence, for every k > 27, there is a circle on row
k with number at least j + 1. Then by our observation above, we have

oz op+(J+ ) +1=0r+(J+2).
Then we get
Oyt 200 +X([+2) 252+ 142 +2) =G+ +2)2 +1=(G+1)Z + 1.

This completes the inductive step. O

For j = N, this immediately implies that some circle in row 2V has number at least N + 1.
This shows that there is a ninja-path passing through at least N + 1 red circles.

Solution 2. We give an alternative proof that there exists a ninja-path passing through at
least N + 1 red circles. Assign numbers to circles as in the previous solution, but we only focus
on the numbers assigned to red circles.

For each positive integer ¢, denote by e; the number of red circles with number <.

Claim 2. 1If the red circle on row [ has number i, then e; < [.

Proof. Note that if two circles C' and C” are both assigned the same number i, then there cannot
be a ninja-path joining the two circles. We partition the triangle into a smaller triangle with
the red circle in row [ at its top along with [ — 1 lines that together cover all other circles.

In each set, there can be at most one red circle with number ¢, and therefore e; < [. O

We observe that if there exists a red circle C' with number 7 > 2, then there also exists a
red circle with number ¢ — 1 in some row that is above the row containing C. This is because
the second last red circle in the ninja-path ending at C' has number ¢ — 1.

Claim 3. We have e; < 2i~! for every positive integer 1.
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Proof. We prove by induction on i. The base case ¢ = 1 is clear, since the only red circle with
number 1 is the one at the top of the triangle . We now assume that the statement is true for
1 < < j—1 and prove the statement for ¢ = j. If e; = 0, there is nothing to prove. Otherwise,
let [ be minimal such that the red circle on row [ has number j. Then all the red circles on row
1,...,1 — 1 must have number less than j. This shows that

l—1<ei+e+ - +e 1 <1+2+-+272=2"1_1,
This proves that [ < 277!, and by Claim 2, we also have e; < [. Therefore e; < 2971 ]
We now see that
e1teg+--tey<l4---4281 =2 1 <n,

Therefore there exists a red circle with number at least N + 1, which means that there exists
a ninja-path passing through at least NV + 1 red circles.

Solution 3. We provide yet another proof that there exists a ninja-path passing through at
least N + 1 red circles. In this solution, we assign to a circle C' the maximum number of red
circles on a ninja-path starting at C' (including C' itself).

Denote by f; the number of red circles with number . Note that if a red circle C' has number
i, and there is a ninja-path from C to another red circle C’, then the number assigned to C’
must be less than .
Clatm 4. If the red circle on row [ has number less than or equal to i, then f; <.

Proof. This proof is same as the proof of Claim 2. The additional input is that if the red circle
on row [ has number strictly less than i, then the smaller triangle cannot have a red circle with
number 7. ]

Claim 5. We have

f1+f2+---+fi<n—{%|

forall 0 <7 < N.

Proof. We use induction on i. The base case ¢ = 0 is clear as the left hand side is the empty
sum and the right hand side is zero. For the induction step, we assume that ¢ > 1 and that
the statement is true for ¢ — 1. Let [ be minimal such that the red circle on row [ has number
less than or equal to 2. Then all the red circles with number less than or equal to 7 lie on rows
[,l+1,... n, and therefore

h+fo+-+fisn—101+1.

On the other hand, the induction hypothesis together with the fact that f; <[ shows that

f1—|—---+fi_1+fi<n—{2?1J+l.

Averaging the two inequalities gives

11 n 1
<n— - : Z.
f1+ +fz n 2{21_1J+2
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Since the left hand side is an integer, we conclude that

f1+"’+fi<n_{%\‘%|| :n—{%J.

This completes the induction step.

Taking ¢+ = N, we obtain

f1+f2+---+fN<n—{2%J<n.

This implies that there exists a ninja-path passing through at least N + 1 red circles.

Comment. Using essentially the same argument, one may inductively prove

n
€qt €+l + T €ari—1 <N — {QZJ

instead. Taking a = 1 and ¢ = N gives the desired statement.
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Let n > 2 be a positive integer. Paul has a 1 x n? rectangular strip consisting of n?
unit squares, where the i square is labelled with ¢ for all 1 < i < n?. He wishes to cut the
strip into several pieces, where each piece consists of a number of consecutive unit squares, and
then translate (without rotating or flipping) the pieces to obtain an n x n square satisfying the
following property: if the unit square in the i"® row and j™ column is labelled with a;;, then
a;; — (i+ 7 — 1) is divisible by n.

Determine the smallest number of pieces Paul needs to make in order to accomplish this.

(U.S.A.)
Answer: The minimum number of pieces is 2n — 1.

Solution 1. For the entirety of the solution, we shall view the labels as taking values in Z/nZ,
as only their values modulo n play a role.
Here are two possible constructions consisting of 2n — 1 pieces.

1. Cut into pieces of sizes n,1,n,1,...,n,1,1, and glue the pieces of size 1 to obtain the last
row.
2. Cut into pieces of sizesn,1,n—1,2,n—2,...,n—1,1, and switch the pairs of consecutive

strips that add up to size n.

We now prove that using 2n — 1 pieces is optimal. It will be more helpful to think of the
reverse process: start with n pieces of size 1 x n, where the k™ piece has squares labelled
k,k+1,...,k+n—1. The goal is to restore the original 1 x n? strip.

Note that each piece, after cutting at appropriate places, is of the form a,a +1,...,b0— 1.
Construct an (undirected but not necessarily simple) graph I" with vertices labelled by 1,... n,
where a piece of the form a,a + 1,...,b — 1 corresponds to an edge from a to b. We make the
following observations.

e The cut pieces came from the k' initial piece k,k + 1,...,k +n — 1 corresponds to a
cycle v, (possibly of length 1) containing the vertex k.

e Since it is possible to rearrange the pieces into one single 1 x n? strip, the graph I' has
an Eulerian cycle.

e The number of edges of I' is equal to the total number of cut pieces.

The goal is to prove that I' has at least 2n — 1 edges. Since I' has an Eulerian cycle, it is
connected. For every 1 < k < n, pick one edge from -, delete it from I' to obtain a new graph
I''. Since no two cycles +; and 7, share a common edge, removing one edge from each cycle
does not affect the connectivity of the graph. This shows that the new graph I must also be
connected. Therefore I has at least n — 1 edges, which means that I" has at least 2n — 1 edges.

Solution 2. We provide an alternative proof that at least 2n — 1 pieces are needed. Instead of
having a linear strip, we work with a number of circular strips, each having length a multiple
of n and labelled as

1,2,...,n,1,2,...n,...,1,2, ... n,

where there are n? cells in total across all circular strips. The goal is still to create the n x n
square by cutting and translating. Here, when we say “translating” the strips, we imagine that
each cell has a number written on it and the final n x n square is required to have every number
written in the same upright, non-mirrored orientation.

Note that the number of cuts will be equal to the number of pieces, because performing
[ > 1 cuts on a single circular strip results in [ pieces.
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Consider any “seam” in the interior of the final square, between two squares S and T', so
that S and T belongs to two separate pieces. We are interested in the positions of these two
squares in the original circular strips, with the aim of removing the seam.

e If the two squares S and T come from the same circular strip and are adjacent, then
the cut was unnecessary and we can simply remove the seam and reduce the number of
required cuts by 1. The circular strips are not affected.

e If these two squares S and T" were not adjacent, then they are next to two different cuts
(either from the same circular strip or two different circular strips). Denote the two cuts
by (S|Y) and (X|T"). We perform these two cuts and then glue the pieces back according
to (S|T) and (X]Y). Performing this move would either split one circular strip into two
or merge two circular strips into one, changing the number of circular strips by at most
one. Afterwards, we may eliminate cut (S|T) since it is no longer needed, which also
removes the corresponding seam from the final square.

By iterating this process, eventually we reach a state where there are some number of circular
strips, but the final n x n square no longer has any interior seams.

Since no two rows of the square can be glued together while maintaining the consecutive
numbering, the only possibility is to have exactly n circular strips, each with length n. In this
state at least n cuts are required to reassemble the square. Recall that each seam removal
operation changed the number of circular strips by at most one. So if we started with only
one initial circular strip, then at least n — 1 seams were removed. Hence in total, at least
n+ (n—1) = 2n — 1 cuts are required to transform one initial circular strip into the final
square. Hence at least 2n — 1 pieces are required to achieve the desired outcome.

Solution 3. As with the previous solution, we again work with circular strips. In particular,
we start out with k circular strips, each having length a multiple of n and labelled as

1,2,...,n,1,2,...n,...,1,2, ... n,

where there are n? cells in total across all k circular strips. The goal is still to create the n x n
square by cutting and translating the circular strips.

Claim. Constructing the n x n square requires at least 2n — k cuts (or alternatively, 2n — k
pieces).

Proof. We prove by induction on n. The base case n = 1 is clear, because we can only have
k = 1 and the only way of producing a 1 x 1 square from a 1 x 1 circular strip is by making a
single cut. We now assume that n > 2 and the statement is true for n — 1.

Each cut is a cut between a cell of label 7 on the left and a cell of label ¢ + 1 on the right
side, for a unique 1 < ¢ < n. Let a; be the number of such cuts, so that a; + a3 + --- + a,, is
the total number of cuts. Since all the left and right edges of the n x n square at the end must
be cut, we have a; > 1 for all 1 <i < n.

If a; = 2 for all 7, then

ap+as+--+a, =2n>2n—k

and hence there is nothing to prove. We therefore assume that there exist some 1 < m < n for
which a,, = 1. This unique cut must form the two ends of the linear strip

m+1lm+2,....m—1+nm+n

from the final product. There are two cases.

Case 1: The strip is a single connected piece.
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In this case, the strip must have come from a single circular strip of length exactly n. We
now remove this circular strip from of the cutting and pasting process. By definition of m, none
of the edges between m and m + 1 are cut. Therefore we may pretend that all the adjacent
pairs of cells labelled m and m + 1 are single cells. The induction hypothesis then implies that

a1—|—~--—|—am,1+am+1+--~+an22(71—1)—(/{:—1).
Adding back in a,,, we obtain

Case 2: The strip is not a single connected piece.

Say the linear strip m + 1,...,m + n is composed of | > 2 pieces C1,...,C;. We claim
that if we cut the initial circular strips along both the left and right end points of the pieces
C1,...,C), and then remove them, the remaining part consists of at most k£ + [ — 2 connected
pieces (where some of them may be circular and some of them may be linear). This is because
C, C1 form a consecutive block of cells on the circular strip, and removing [ — 1 consecutive
blocks from k circular strips results in at most k + (I — 1) — 1 connected pieces.

Once we have the connected pieces that form the complement of C, ..., C;, we may glue
them back at appropriate endpoints to form circular strips. Say we get k" circular strips after
this procedure. As we are gluing back from at most k + [ — 2 connected pieces, we see that

E<k+1-2.

We again observe that to get from the new circular strips to the n — 1 strips of size 1 x n, we
never have to cut along the cell boundary between labels m and m + 1. Therefore the induction
hypothesis applies, and we conclude that the total number of pieces is bounded below by

I+ 2n—1)—-K)=1+2n—1)— (k+1—-2)=2n—k.

This finishes the induction step, and therefore the statement holds for all n. ]

Taking k& = 1 in the claim, we see that to obtain a n x n square from a circular 1 x n? strip,
we need at least 2n — 1 connected pieces. This shows that constructing the n x n square out of
a linear 1 x n? strip also requires at least 2n — 1 pieces.
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Elisa has 2023 treasure chests, all of which are unlocked and empty at first. Each day,
Elisa adds a new gem to one of the unlocked chests of her choice, and afterwards, a fairy acts
according to the following rules:

e if more than one chests are unlocked, it locks one of them, or
e if there is only one unlocked chest, it unlocks all the chests.

Given that this process goes on forever, prove that there is a constant C' with the following
property: Elisa can ensure that the difference between the numbers of gems in any two chests

never exceeds C, regardless of how the fairy chooses the chests to lock.
(Israel)

Solution 1. We will prove that such a constant C' exists when there are n chests for n an odd
positive integer. In fact we can take C' = n — 1. Elisa’s strategy is simple: place a gem in the
chest with the fewest gems (in case there are more than one such chests, pick one arbitrarily).

For each integer ¢ > 0, let a} < af < -+ < al, be the numbers of gems in the n chests at the
end of the t™ day. In particular, ¥ = --- = a2 = 0 and

aﬁ+a§+-~~+a2=t.

For each ¢ > 0, there is a unique index m = m(t) for which a’' = af + 1. We know that
al > afn(t) for all j > m(t), since afn(t) < a;j(lt) < az-“ = a}. Elisa’s strategy also guarantees
that if an index j is greater than the remainder of ¢ when divided by n (i.e. the number of
locked chests at the end of the ¢ day), then a! > afn(t), because some chest with at most a}
gems must still be unlocked at the end of the t*" day.

Recall that a sequence r; < z9 < --- < x, of real numbers is said to majorise another

sequence y; < Yo < - -+ < y, of real numbers when for all 1 < k£ < n we have
1+ 2Tot+ -+ T <Y1 +y2+ -+ Yk

and
T1+To+ - +Tp=y1+Y2+ -+ Yn.

Our strategy for proving a, — a} < n — 1 is to inductively show that the sequence (a!

majorised by some other sequence (b%).

We define this other sequence (b!) as follows. Let b = k — ”TH for 1 <k <n. Asnis
odd, this is a strictly increasing sequence of integers, and the sum of its terms is 0. Now define
bi=0) + =t +1fort>1and 1 <i<mn. Thus fort >0,

) is

pH b ift+1%¢ (modn),
‘ bi+1 ift+1=4 (modn).

From these properties it is easy to see that

o b\ + b+ -+ b =tforallt>0, and

t t
® b <bj,

forallt > 0 and 1 < i < n—1, with the inequality being strict if ¢ # ¢ (mod n).
Claim 1. For each t > 0, the sequence of integers b}, b, ..., b' majorises the sequence of
integers a},al, ..., al

’y'n
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Proof. We use induction on ¢. The base case t = 0 is trivial. Assume ¢ > 0 and that (b%)
majorises (af). We want to prove the same holds for ¢ + 1.

First note that the two sequences (b™!) and (a!*') both sum up to ¢ + 1. Next, we wish to
show that for 1 < k < n, we have

VLt b <l et Al

When t+1 is replaced by ¢, the above inequality holds by the induction hypothesis. For the sake
of contradiction, suppose k is the smallest index such that the inequality for ¢t 4+ 1 fails. Since
the left hand side increases by at most 1 during the transition from ¢ to ¢ + 1, the inequality
for t + 1 can fail only if all of the following occur:

o Wi+ b+ -+, =al +al+-- +al,
e t+1=j (mod n) for some 1 < j <k (so that ;™" = bl + 1),
e m(t) >k (so that a/™ = a! for 1 <i < k).

The first point and the minimality of & tell us that b}, ..., b} majorises af,. .., a} as well (again
using the induction hypothesis), and in particular b}, > af.

The second point tells us that the remainder of ¢ when divided by n is at most k£ — 1,
so ab > afn(t) (by Elisa’s strategy). But by the third point (m(¢) > k + 1) and the non-
decreasing property of af, we must have the equalities af, = af |, = afn(t). On the other hand,
aj, < bj, < b}, with the second inequality being strict because ¢ # k (mod n). We conclude
that

Wi+ 04+ + b, >al +ab+ - +al,
a contradiction to the induction hypothesis. OJ

This completes the proof as it implies

t t ¢ ¢ 0 0 _

Comment 1. The statement is true even when n is even. In this case, we instead use the initial state

The same argument shows that C' = n works.

Comment 2. The constants C = n — 1 for odd n and C' = n for even n are in fact optimal. To
see this, we will assume that the fairy always locks a chest with the minimal number of gems. Then
at every point, if a chest is locked, any other chest with fewer gems will also be locked. Thus m(t) is
always greater than the remainder of ¢ when divided by n. This implies that the quantities

Iy=a +-- +al, — b —-- =1},

for each 0 < k < n, do not increase regardless of how Elisa acts. If Elisa succeeds in keeping al, — a}
bounded, then these quantities must also be bounded; thus they are eventually constant, say for t > tg.
This implies that for all ¢ > tg, the number m(t) is equal to 1 plus the remainder of ¢ when divided by

n.

Claim 2. For T = tg divisible by n, we have

al <al <---<adl.
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Proof. Suppose otherwise, and let j be an index for which a? = a;‘-FH. We have m(T + k — 1) = k for

all 1 < k <n. Then a?ﬂ > aT:f , which gives a contradiction. O
This implies al — af > n — 1, which already proves optimality of C = n — 1 for odd n. For even

n, note that the sequence (aiT) has sum divisible by n, so it cannot consist of n consecutive integers.
Thus al — al > n for n even.

Solution 2. We solve the problem when 2023 is replaced with an arbitrary integer n. We
assume that Elisa uses the following strategy:

At the beginning of the (nt + 1) day, Elisa first labels her chests as Ct, ..., C! so
that before she adds in the gem, the number of gems in C? is less than or equal C’Jt«
for all 1 < ¢ < j < n. Then for days nt + 1,nt + 2,...,nt + n, she adds a gem to
chest C!, where i is chosen to be minimal such that C? is unlocked.

Denote by ¢! the number of gems in chest C! at the beginning of the (nt + 1)™ day, so that
d<d<--<d,

by construction. Also, denote by ¢ the total number of gems added to chest C! during days

nt+1,...,nt + n. We make the following observations.
e Wehave ? =cJ =---=c? =0.

e We have ¢! + - + ¢!, = nt, since n gems are added every n days.

t+1)

The sequence ( is a permutation of the sequence (c + §¢) for all ¢ > 0.

We have 6! + -+ + 6L, =n for all t > 0.

Since Elisa adds a gem to an unlocked chest C! with ¢ minimal, we have
S 4+05+- -+ >k
forevery 1 <k <mandt>0.

We now define another sequence of sequences of integers as follows.
d) =3n(i— "), d=d) +t.

We observe that
di+-+d =c+ -+ =nt

Claim 3. For each t > 0, the sequence (d}) majorises the sequence (c!).

Proof. We induct on t. For t = 0, this is clear as all the terms in the sequence (c

Y) are equal.
For the induction step, we assume that (df) majorises (c!). Given 1 < k < n — 1, we wish to

show that

(2

At b T < T L
Case 1: &t ... ¥ is a permutation of ¢t + 8%, ... ck + 6t.
Since d! + -+ +dl, < + -+ + ¢, by the induction hypothesis, we have
k k k k k
DM =k Y di<k+ ) b <D+ =Dt
i=1 =1 =1 =1

i=1



48 Chiba, Japan, 2nd—13th July 2023

t+1 t+1 : t st t t
Case 2: c;™,...,¢c," " 1is not a permutation of ¢ +9y,..., ¢, + 0y.

In this case, we have ¢; + 0; > ¢} + 0’ for some i < k < j. It follows that
ad+n=c+n=d —I—(5t>c +5t c > -

Using dj, + 3n = d},; and the induction hypothesis, we obtain

k k 1 1 1kl
;cf+1>;c§>ctl+ +ck1+20k+20k+1 ———204— Zc——
>1§d¢+11§dt_ﬁ: Z k+2dt ZdHl
- 2 =1 ' 2 =1 Z 2 1= i=1 ’

This finishes the induction step. O

It follows that
c = <d, —di =3n(n-1).

n

From day nt+1 to day n(t+1)+ 1, Elisa adds n gems, and therefore the difference may increase
by at most n. This shows that the difference of the number of gems in two chests never exceeds
C=3nn—-1)+n
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- Let N be a positive integer, and consider an N x N grid. A right-down path is a
sequence of grid cells such that each cell is either one cell to the right of or one cell below the
previous cell in the sequence. A right-up path is a sequence of grid cells such that each cell is
either one cell to the right of or one cell above the previous cell in the sequence.

Prove that the cells of the N x N grid cannot be partitioned into less than N right-down
or right-up paths. For example, the following partition of the 5 x 5 grid uses 5 paths.

(Canada)

Solution 1. We define a good parallelogram to be a parallelogram composed of two isosceles
right-angled triangles glued together as shown below.

AR

Given any partition into k right-down or right-up paths, we can find a corresponding packing
of good parallelograms that leaves an area of k empty. Thus, it suffices to prove that we must
leave an area of at least N empty when we pack good parallelograms into an N x N grid. This
is actually equivalent to the original problem since we can uniquely recover the partition into
right-down or right-up paths from the corresponding packing of good parallelograms.

@

We draw one of the diagonals in each cell so that it does not intersect any of the good
parallelograms. Now, view these segments as mirrors, and consider a laser entering each of
the 4N boundary edges (with starting direction being perpendicular to the edge), bouncing
along these mirrors until it exits at some other edge. When a laser passes through a good
parallelogram, its direction goes back to the original one after bouncing two times. Thus, if the
final direction of a laser is perpendicular to its initial direction, it must pass through at least
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one empty triangle. Similarly, if the final direction of a laser is opposite to its initial direction,
it must pass though at least two empty triangles. Using this, we will estimate the number of
empty triangles in the N x N grid.

We associate the starting edge of a laser with the edge it exits at. Then, the boundary edges
are divided into 2N pairs. These pairs can be classified into three types:

(1) a pair of a vertical and a horizontal boundary edge,
(2) a pair of boundary edges from the same side, and
(3) a pair of boundary edges from opposite sides.

Since the beams do not intersect, we cannot have one type (3) pair from vertical boundary
edges and another type (3) pair from horizontal boundary edges. Without loss of generality,
we may assume that we have t pairs of type (3) and they are all from vertical boundary edges.
Then, out of the remaining boundary edges, there are 2N horizontal boundary edges and 2N —2t¢
vertical boundary edges. It follows that there must be at least ¢ pairs of type (2) from horizontal
boundary edges. We know that a laser corresponding to a pair of type (1) passes through at
least one empty triangle, and a laser corresponding to a pair of type (2) passes through at least
two empty triangles. Thus, as the beams do not intersect, we have at least (2N —2t)+2-t = 2N
empty triangles in the grid, leaving an area of at least N empty as required.

Solution 2. We apply an induction on N. The base case N = 1 is trivial. Suppose that the
claim holds for N — 1 and prove it for N > 2.

Let us denote the path containing the upper left corner by P. If P is right-up, then every
cell in P is in the top row or in the leftmost column. By the induction hypothesis, there are at
least N — 1 paths passing through the lower right (N — 1) x (N — 1) subgrid. Since P is not
amongst them, we have at least N paths.

Next, assume that P is right-down. If P contains the lower right corner, then we get an
(N —1) x (N —1) grid by removing P and glueing the remaining two parts together. The main
idea is to extend P so that it contains the lower right corner and the above procedure gives a
valid partition of an (N — 1) x (N — 1) grid.

We inductively construct (), which denotes an extension of P as a right-down path. Initially,
@ = P. Let A be the last cell of @, B be the cell below A, and C' be the cell to the right of
A (if they exist). Suppose that A is not the lower right corner, and that () both B and C' do
not belong to the same path as A. Then, we can extend @ as follows (in case we have two or
more options, we can choose any one of them to extend Q).

1. If B belongs to a right-down path R, then we add the part of R, from B to its end, to Q.
2. If C belongs to a right-down path R, then we add the part of R, from C' to its end, to Q.

3. If B belongs to a right-up path R which ends at B, then we add the part of R in the
same column as B to Q).
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4. If C belongs to a right-up path R which starts at C', then we add the part of R in the
same row as C' to Q.

5. Otherwise, B and C' must belong to the same right-up path R. In this case, we add B
and the cell to the right of B to Q.

Note that if B does not exist, then case (4) must hold. If C' does not exist, then case (3) must
hold.

It is easily seen that such an extension also satisfies the hypothesis (), so we can repeat
this construction to get an extension of P containing the lower right corner, denoted by ). We
show that this is a desired extension, i.e. the partition of an (N — 1) x (N — 1) grid obtained
by removing () and glueing the remaining two parts together consists of right-down or right-up
paths.

Take a path R in the partition of the N x N grid intersecting (). If the intersection of @)
and R occurs in case (1) or case (2), then there exists a cell D in R such that the intersection
of @) and R is the part of R from D to its end, so R remains a right-down path after removal
of (. Similarly, if the intersection of () and R occurs in case (3) or case (4), then R remains a
right-up path after removal of Q). If the intersection of Q and R occurs in case (5), then this
intersection has exactly two adjacent cells. After the removal of these two cells (as we remove
@), R is divided into two parts that are glued into a right-up path.

Thus, we may apply the induction hypothesis to the resulting partition of an (N—1)x (N—1)
grid, to find that it must contain at least N — 1 paths. Since P is contained in ) and is not
amongst these paths, the original partition must contain at least N paths.
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The Imomi archipelago consists of n > 2 islands. Between each pair of distinct islands

is a unique ferry line that runs in both directions, and each ferry line is operated by one of

k companies. It is known that if any one of the k companies closes all its ferry lines, then

it becomes impossible for a traveller, no matter where the traveller starts at, to visit all the

islands exactly once (in particular, not returning to the island the traveller started at).
Determine the maximal possible value of k in terms of n.

(Ukraine)
Answer: The largest k is k = |log, n|.

Solution. We reformulate the problem using graph theory. We have a complete graph K,, on
n nodes (corresponding to islands), and we want to colour the edges (corresponding to ferry
lines) with k colours (corresponding to companies), so that every Hamiltonian path contains
all k different colours. For a fixed set of k£ colours, we say that an edge colouring of K, is good
if every Hamiltonian path contains an edge of each one of these k colours.

We first construct a good colouring of K, using k = |log, n| colours.

Claim 1. Take k = |log, n|. Consider the complete graph K, in which the nodes are labelled
by 1,2,...,n. Colour node i with colour min(|log,i| + 1, %) (so the colours of the first nodes
are 1,2,2,3,3,3,3,4,... and the last n — 2*~! + 1 nodes have colour k), and for 1 <i < j < n,
colour the edge 75 with the colour of the node . Then the resulting edge colouring of K, is
good.

Proof. We need to check that every Hamiltonian path contains edges of every single colour. We
first observe that the number of nodes assigned colour k is n — 2~ + 1. Since n > 2*, we have

n—2k_1+1>g+1.

This implies that in any Hamiltonian path, there exists an edge between two nodes with colour
k. Then that edge must have colour k.

We next show that for each 1 < i < k, every Hamiltonian path contains an edge of colour .
Suppose the contrary, that some Hamiltonian path does not contain an edge of colour i. Then
nodes with colour ¢ can only be adjacent to nodes with colour less than ¢ inside the Hamiltonian
path. Since there are 2°~! nodes with colour 7 and 2~! — 1 nodes with colour less than 4, the
Hamiltonian path must take the form

(i) > (<) = (i) > (<) o o o (<) > (D),

where (i) denotes a node with colour 4, (< 7) denotes a node with colour less than i, and <
denotes an edge. But this is impossible, as the Hamiltonian path would not have any nodes
with colours greater than . O

Fix a set of k colours, we now prove that if there exists a good colouring of K, then
k < |logyn|. For n = 2, this is trivial, so we assume n > 3. For any node v of K, and
1 <i < k, we denote by d;(v) the number of edges with colour ¢ incident with the node v.

Lemma 1. Consider a good colouring of K,,, and let AB be an arbitrary edge with colour .
If d;(A) + d;(B) < n — 1, then the colouring will remain good after recolouring edge AB with
any other colour.

Proof. Suppose there exists a good colouring together with an edge AB of colour i, such that if
AB is recoloured with another colour, the colouring will no longer be good. The failure of the
new colouring being good will come from colour ¢, and thus there exists a Hamiltonian path
containing edge AB such that initially (i.e. before recolouring) AB is the only edge of colour 4
in this path. Writing A = Ay and B = By, denote this Hamiltonian path by

ASHAsA‘—’""—>A1HAOHB()‘—’Bl‘—)"'HBtAHBt,
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where s,t > 0 and s+t + 2 = n.
In the initial colouring, we observe the following.

e The edge ByA, must have colour 7, since otherwise the path
Ay Ao oA 1o Ao By B oo B 1< B
has no edges of colour .
e Similarly, the edge AyB; must have colour 7.

e For each 0 < p < s, at least one of the edges ByA, and AyA, 1 must have colour 7, since
otherwise the path

AS(—)"‘(—)Ap+2<—)Ap+1<—)A0(—)A1(—)"'<—)Ap_1<—)Ap<—)Bo<—)B1(—)"'<—>Bt
has no edges of colour 1.

e Similarly, for each 0 < ¢ < ¢, at least one of the edges AyB, and ByB,+1 must have
colour 1.

In the above list, each edge Ay X appears exactly once and also each edge By X appears exactly
once (where AgBy and ByAy are counted separately). Adding up the contributions to d;(A) +
d;(B), we obtain
di(A)+di(B) = (s+1)+(t+1)=n.

This contradicts our assumption that d;(A) + d;(B) < n — 1. O

Our strategy now is to repeatedly recolour the edges using Lemma 1 until the colouring has
a simple structure. For a node v, we define m(v) to be the largest value of d;(v) over all colours
i

Lemma 2. Assume we have a good colouring of K,,. Let A, B be two distinct nodes, and let j
be the colour of edge AB where 1 < j < k. If

° m(A) = m(B) and
e m(A) = d;(A) for some i # j,

then after recolouring edge AB with colour 4, the colouring remains good.

Proof. Note that
di(A)+d;j(B) < (n—1—m(A)) +m(B) <n-—1,

and so we may apply Lemma 1. |

Lemma 3. Assume we have a good colouring of K,,. Let S be a nonempty set of nodes. Let
A € S be a node such that m(A) > m(B) for all B € 5, and choose 1 < i < k for which
d;(A) = m(A). Then after recolouring the edge AB with colour ¢ for all B € S distinct from
A, the colouring remains good.

Proof. We repeatedly perform the following operation until all edges AB with B € S have
colour ¢:

choose an edge AB with B € S that does not have colour i, and recolour it with
colour .

By Lemma 2, the colouring remains good after one operation. Moreover, m(A) increase by 1
during an operation, and all other m(B) may increase by at most 1. This shows that m(A) will
remain maximal amongst m(B) for B € S. We will also have d;(A) = m(A) after the operation,
since both sides increase by 1. Therefore the operation can be performed repeatedly, and the
colouring remains good. H
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We first apply Lemma 3 to the set of all n nodes in K,,. After recolouring, there exists a
node A; such that every edge incident with A; has colour ¢;. We then apply Lemma 3 to the
set of nodes excluding A;, and we obtain a colouring where

e every edge incident with A; has colour ¢y,
e every edge incident with Ay except for A; Ay has colour cs.
Repeating this process, we arrive at the following configuration:
e the n nodes of K,, are labelled A;, A, ..., A,,
e the node A; has a corresponding colour ¢; (as a convention, we also colour A; with ¢;),
e for all 1 < u < v < n, the edge between A, and A, has colour ¢,,
e this colouring is good.

Claim 2. For every colour i, there exists a 1 < p < n such that the number of nodes of colour
i amongst Ay,..., A, is greater than p/2.

Proof. Suppose the contrary, that for every 1 < p < n, there are at most |p/2| nodes of colour
. We then construct a Hamiltonian path not containing any edge of colour . Let A,,,..., A,
be the nodes with colour ¢, where 1 < x5 < --- < x4, and let A,,, A,,,..., A, be the nodes
with colour different from i, where y; < yo < -+ < y,. We have s + ¢t = n and t < |n/2], so
t < s. We also see that y; < z; for all 1 < j < ¢, because otherwise, Ay, Ay, ..., A, will have
j nodes of colour ¢ and less than j nodes of colour different from i. Then we can construct a
Hamiltonian path
A$1<—>Ay1<—>A$2<—>Ay2<—>A$3<—>-~<—>A$t<—>Ayt<—>A (_)'”(_’Ays

Yt+1

that does not contain an edge with colour i. This contradicts that the colouring is good. [

So for every colour 7, there has to be an integer p; with 1 < p; < n such that there are more
than p;/2 nodes assigned colour ¢ amongst Ay,..., A,. Choose the smallest such p; for every
i, and without loss of generality assume

p1r <p2 <--- <Dg.

Note that the inequalities are strict by the definition of p;.
Then amongst the nodes Ay, ..., A,,, there are at least [(p; + 1)/2] nodes of colour j for all
1 <7 <. Then

P =

17 =

p1+1w [p2+1w [piJrlw
[ 5 + 5 + + 5 .
This inductively shows that '

pi = 2'—1

for all 1 < i < k, and this already proves n > 2% — 1.

It remains to show that n = 2¥ — 1 is not possible. If n = 2¥ — 1, then all inequalities have
to be equalities, so p; = 2 — 1 and there must be exactly 2°~! nodes of colour i. Moreover,
there cannot be a node of colour 7+ amongst Ay, Ay, ..., Ay, ,, and so the set of nodes of colour
¢ must precisely be

AQ@'—I, AQi—l+1, e ,AQi,l.

Then we can form a Hamiltonian path
Agi1 o> Ay o A1y o Ay o Agii g o> A3 o ... o A,

which does not contain an edge of colour k. This is a contradiction, and therefore n > 2.
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Geometry

Let ABCDE be a convex pentagon such that ZABC = ZAED = 90°. Suppose
that the midpoint of C'D is the circumcentre of triangle ABE. Let O be the circumcentre of
triangle ACD.

Prove that line AO passes through the midpoint of segment BE.

(Slovakia)
Solution 1 (Area Ratio).
A
‘ E
N
C/
B —
0
M
X

Let M be the midpoint of CD and X = BC n ED. Since ZABX = /ZAEX =90°, AX is a
diameter of the circumcircle of AABE so the midpoint of AX is the circumcentre of AABE.
Therefore, the midpoint of AX coincides with M. This means ACX D is a parallelogram and
in particular, AD || BC and AC || ED.

We denote the area of AP, P,P3 by [Py P,Ps]. To prove that line AO bisects BE, it suffices
to show [OAB] = [OAE].

Let C', D" be the midpoints of AC, AD respectively. Since OD’ 1 AD, AD | BC, and
BC L AB, we have AB || OD', so [OAB] = [D'AB]. Using AD || BC again, we have
[D'’AB] = [D'AC]. Therefore

[OAB] = [D'AB] = [D'AC]| = %[ACD].
Similarly

[OAE] = [C"AE] = [C"AD] = ~[ACD].

1
2



56 Chiba, Japan, 2nd—13th July 2023

Combining these gives [OAB] = [OAE].

Comment 1. The following is another way to prove AD || BC and AC || ED.

Let £ be the perpendicular bisector of AB. Since the midpoint of C'D is the circumcentre of AABE,
it must lie on £. Also, since ZABC = 90°, the midpoint of AC is on ¢. Therefore, we get AD || ¢ || BC
and similarly AC' || ED.

Solution 2 (Similar Triangles).

X

Let M be the midpoint of C'D and X = BC'n ED. As in Solution 1, M is the midpoint of AX
and ACXD is a parallelogram. Since AD || BC' and ZABC' = 90°, we have ZDAB = 90°.

Let N be the midpoint of BE. It is enough to show that /NAB = ZOAB. Since ABXFE
is cyclic, we have
/ABE = /AXFE =/XAC and /BFEA=/CXA.
Therefore, AABE ~ ANCAX, and N corresponds to M under this similarity. In particular,
/NAB = /ACM.

Also, we have
LOAB =90° — £LDAO = LZACM = /NAB.
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Solution 3 (Reflection).

Let N be the midpoint of BE, and let F, G be the projections of C, D onto AD, AC respectively.
CGFD is cyclic so
/AGF = /CDF = /ZCDA =90° — ZOAC

giving AO L FG. Therefore it’s enough to show that AN L FG.
As in Solution 1, AD || BC and AC' || ED so ZEAG = ZFAB = 90° and in fact AEDG
and AFCB are rectangles. From this we get
LAGE = /DAG = LFAC = /BFA

so AGAE ~ AFAB.

Let F’ be the reflection of F'in A, then AF'AB ~ AFAB ~ AGAE. Thus A is the centre
of the spiral symmetry taking F'B — GE.

Let P be the midpoint of F’G then by the spiral similarity, we have AAPN ~ AAGFE which
implies ZNAP = 90°. From A being the midpoint of F/F" we have AP || FG. Combining the
results gives AN 1 FG.



58 Chiba, Japan, 2nd—13th July 2023

Let ABC be a triangle with AC' > BC'. Let w be the circumcircle of triangle ABC
and let r be the radius of w. Point P lies on segment AC' such that BC = C'P and point S is
the foot of the perpendicular from P to line AB. Let ray BP intersect w again at D and let )
lie on line SP such that PQ) = r and S, P, @ lie on the line in that order. Finally, let the line
perpendicular to C'Q) from A intersect the line perpendicular to D@ from B at E.

Prove that E lies on w.
(Iran)

Solution 1 (Similar Triangles).

First observe that

/DPA = /BPC “"=“P ,cBP = /CBD = /CAD = / PAD

so DP = DA. Thus there is a symmetry in the problem statement swapping (A, D) < (B,C).

Let O be the centre of w and let E be the reflection of P in C'D which, by

CP=CB

/CED = /DPC =180° - ZCPB 180° — LPBC = 180° — ZDBC

lies on w. We claim the two lines concur at E. By the symmetry noted above, it suffices to
prove that BE 1 DQ and then AE1CQ will follow by symmetry.

We have AO = PQ, AD = DP and
/DAO = 90° — /ABD "= /D PQ.
Hence AAOD =~ APQ@D. Thus
/QDB+/DBE = /ODA+/DAE ""=Z"* /ODA+/ AED = (90° — LAED)+LAED = 90°

giving BE 1 D@ as required.
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Solution 2 (Second Circle).

As in Solution 1, we prove that DA = DP and note the symmetry in the problem statement
swapping (A, D) < (B, ().

Let I" be the circumcircle of APCD. Since DP = DA and LZACD = ZPCD, the radius of
I' is equal to that of w. We have that

LDPQ = /BPS =90°—-ZABD = 90° — ZPCD.

This, combined with P(@) being equal to the common circumradius of I' and w, means that @)
is the circumcentre of I'.

Let the perpendiculars to C'Q, DQ from A, B intersect at E then we have
LEAC = 90° — £ACQ %“=" 90° — LQPC = 90° — LSPA = /CAB — /EAB =2/PAB
/DBE =90° — /QDP °"=°" 90° - /DPQ = 90° — /BPS = /ABD — /ABF =2/ ABP.
Combining these
/BEA =180° — 2(LPAB + ZABP) = 180° — 2/ APD "*="" /BDA
which gives that E' lies on w.
Comment 1. An alternative final angle chase is

/BEA = 180° — ZCQD £ 180° — 2 (180° — .DPC) = 180° — 224APD =" /PDA = /BDA.
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Comment 2. An alternative formulation of the problem in terms of a cyclic quadrilateral is given
below:

Let ABCD be a cyclic quadrilateral with circumcircle w and circumradius r. The diag-
onals AC' and BD intersect at P. Suppose that AD = DP. Let S be the foot of the
perpendicular from P to the line AB. Point @ lies on line SP such that PQ = r and
S, P, @ lie on the line in that order. Let the line perpendicular to C'Q from A intersect
the line perpendicular to DQ from B at F.

Prove that F lies on w.
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Let ABCD be a cyclic quadrilateral with ZBAD < ZADC'". Let M be the midpoint
of the arc C'D not containing A. Suppose there is a point P inside ABC'D such that ZADB =
/CPD and ZADP = /PCB.

Prove that lines AD, PM, BC' are concurrent.
(Slovakia)

Solution 1. Let X and Y be the intersection points of AM and BM with PD and PC
respectively. Since ABC'M D is cyclic and CM = M D, we have

LXAD = /MAD = /ZCBM = ZCBY.

Combining this with ZADX = ZYCB, we get /DXA =/BYC, and so ZPXM = /MY P.
Moreover, /Y PX = /CPD = ZADB = ZAMB. The quadrilateral M X PY therefore has
equal opposite angles and so is a parallelogram.

T

Let R and S be the intersection points of AM and BM with BC and AD respectively.
Due to AM || PC and BM || PD, we have LZASB = ZADP = /PCB = ZARB and so
the quadrilateral ABRS is cyclic. We then have Z/SRB = 180° — ZBAS = /DCB and so
SR || CD. In triangles PCD and MRS, the corresponding sides are parallel so they are
homothetic meaning lines DS, PM, C'R concur at the centre of this homothety.
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Solution 2. Let AD and BC meet at T. Denote by p,, py, mq and m, the distances between
line TA and P, TB and P, TA and M and between T'B and M respectively. Our goal is to
prove p, : pp = Mg : my, which is equivalent to the collinearity of T', P and M.

T

Let /BAC = /BDC = o, LDBA = /DCA = 3, LZADB = LZAMB = LACB =
LCPD =pu, LZADP = /PCB =v and ZMAD = ZCAM = Z/MBD = ZCBM = .

From /ADP = /PCB =v and ZMAD = ZCBM = x we get

pe PD-sinv  PD m, MA-siny MA

= — q e _ _ '
»  PC-smv PC " m,  MB-smy MB

Hence p, : ppy = m, : my is equivalent to PD : PC' = M A : M B, and since ZCPD = /ZAMB =
(t, this means we have to show that triangles PDC and M AB are similar.

In triangle PDC we have

/PDC + /DCP = 180° — /ZCPD = 180° — p,
LPDC—/DCP=(a+p—v)—(B+p—v)=a-—p.

Similarly, in triangle M AB we have

/BAM + /MBA =180° — ZAMB = 180° — p,
LBAM — /ZMBA = (a+x)— (f+x) =a—0.

Therefore, (LBAM,/MBA) and (£LPDC, ZDC P) satisfy the same system of linear equations.
The common solution is

180" —pta=-B 4 svBa—spop- BV —p-ath

/LBAM = /PDC = 5 5

Hence triangles PDC' and M AB have equal angles and so are similar. This completes the
proof.
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Let ABC' be an acute-angled triangle with AB < AC'. Denote its circumcircle by €2
and denote the midpoint of arc CAB by S. Let the perpendicular from A to BC meet BS
and 2 at D and E # A respectively. Let the line through D parallel to BC' meet line BE at L
and denote the circumcircle of triangle BDL by w. Let w meet 2 again at P # B.

Prove that the line tangent to w at P, and line BS intersect on the internal bisector
of ZBAC.
(Portugal)

Solution 1 (Triangles in Perspective). Let S’ be the midpoint of arc BC of 2, diametrically
opposite to S so S5’ is a diameter in 2 and AS’ is the angle bisector of ZBAC'. Let the tangent
of w at P meet € again at (Q # P, then we have Z5Q5" = 90°.

We will show that triangles AP D and S'QS are similar and their corresponding sides are par-
allel. Then it will follow that the lines connecting the corresponding vertices, namely line AS’,
that is the angle bisector of ZBAC, line P(Q), that is the tangent to w at P, and DS are con-
current. Note that the sides AD and S’S have opposite directions, so the three lines cannot be
parallel.

Q S

E\

S/

First we show that AP | DP. Indeed, from cyclic quadrilaterals APBE and DPLB we
can see that

LPAD = /PAFE =180° — ZEBP = /PBL = ZPDL =90° — LADP.

Then, in triangle APD we have Z/DPA = 180° — L PAD — ZADP = 90°.

Now we can see that:

e Both lines ADFE and SS’ are perpendicular to BC', so AD || §'S.

e Line P(Q) is tangent to circle w at P so ZDPQ = Z/DBP = /SBP = ZSQP; it follows
that PD || QS.
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e Finally, since AP L PD || QS L S’Q, we have AP || S'Q as well.

Hence the corresponding sides of triangles APD and S’QS are parallel completing the solution.
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Solution 2 (Pascal). Again, let S’ be the midpoint of arc BC', diametrically opposite to S,
so AES'S is an isosceles trapezoid, and Z/S'BS = /S'PS = 90°. Let lines AF and PS’ meet
at T and let AP and S’B meet at point M.

We will need that points L, P, S are collinear, and points 7" and M lie on circle w.

e From LLPB = /ZLDB = 90° — ZBDE = 90° — £BSS' = £55'B = 180° — ZBPS we
get /LPB+ /ZBPS = 180°, so L, P and S are indeed collinear.

e Since S5’ is a diameter in 2, lines LPS and PT'S" are perpendicular. We also have LD ||
BC 1 AE hence ZLDT = ZLPT = 90° and therefore T € w.

e By /LPM = /SPA = /SEA = /FEAS" = /EBS" = ZLBM, point M is concyclic
with B, P, L so M € w.

Q0 S
A g
-~
7~
-~
-7
P~ \
w \
// \
g X
-~
- \
-~
-~ \
L D \
\
\
M T \
\
\
\
\

Now let X be the intersection of line BDS with the tangent of w at P and apply Pas-
cal’s theorem to the degenerate cyclic hexagon PPM BDT'. This gives points PP n BD = X,
PM DT =A and MBnTP = 5" are collinear so X lies on line AS’, that is the bisector
of Z/BAC.

Comment. It is easy to see that LMT' D is a rectangle, but we did not need this information for the
solution.
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Solution 3 (Projections). Let A" and S’ be the points of Q diametrically opposite to A
and S respectively. It is well-known that £ and A’ are reflections with respect to SS" so AS’
is the angle bisector of ZEAA’. Define point T to be the intersection of AF and PS’. As in
the previous two solutions, we have: ZDPA = 90° so PD passes through A’; points L, P, S are
collinear; and T € w.

Let lines AS” and PDA’ meet at R. From the angles of triangles PRS’ and PTE we get
/ARP = L AS'P + /S'PA = /AEP + /EPS' = ZATP
so points A, P,T, R are concyclic. Denote their circle by . Due to ZRPA = ZDPA = 90°,

segment AR is a diameter in 7.

1

Q S
A U
7 1%
P
w “‘
m — X
L D,
t
T, R
B C
E Al
S/

We claim that circles w and v are perpendicular. Let line LPS meet v again at U # P, and
consider triangles PLT and PTU. By ZLPT = ZTPU = 90° and

/PTL=/PBL=180°—-ZEBP = /PAFE = L/ PAT = L/ PUT,

triangles PLT and PTU are similar. It follows that the spiral similarity that takes PLT
to PTU, maps w to v and the angle of this similarity is 90°, so circles w and ~ are indeed
perpendicular.

Finally, let lines BDS and ARS" meet at X. We claim that X bisects AR, so point X is
the centre of v and, as w and ~ are perpendicular, PX is tangent to w.

Let t be the tangent of w at D. From Z(DT,t) = LZTPD = £S'PA’ = ZEAS" it can be
seen that ¢ || AS’. Let I be the common point at infinity of t and AS’. Moreover, let lines LPS
and ADTFE meet at V. By projecting line AS’ to circle w through D, then projecting w to
line AE through L, finally projecting AF to §2 through P, we find

AX
oy = (A RX. 1) Z(T.PB.D) = (T,V;E,D) = (55 E, A) = -1,

so X is the midpoint of AR.
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Let ABC be an acute-angled triangle with circumcircle w and circumcentre O. Points
D # B and FE # C lie on w such that BD 1 AC and CE 1. AB. Let CO meet AB at X, and
BO meet AC' at Y.

Prove that the circumcircles of triangles BX D and CY E have an intersection on line AO.
(Malaysia)

Solution 1 (Reflections).
Note that AO = OC implies the lines AO, X O are reflections of each other about the line
parallel to AC through O, which is the perpendicular bisector of BD. Call this line ¢.

Let P # X be the second intersection of circle ©BX D with line XO, and let Z be the
intersection of circle ®BX D with line AO furthest from A.

Consider a reflection across £. This maps B to D, AO to X O, and circle ®BX D to itself so
the transformation must map P, the intersection of XO and circle ©BX D, to the intersection
of AO and ®BX D furthest from A i.e. Z. Thus we have

L0ZB =/4DPO =/DPX =/DBX =90° - ZBAC = ZOCB

which implies BOCZ is cyclic.

Therefore the second intersection of circle ®BOC with line AO lies on circle ©BXD.
Similarly, Z lies on circle ©CY E so the two circles have common point Z on AQO.
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Solution 2 (Similar Triangles).

1 B

Let B’ be the reflection of B in AC' and let AO intersect circle ©OBC' again at Z # O.
Observe that

/B'CA+/ACZ =2/ ACB+/BCZ =2/ACB+/B0OZ =2/ ACB+(180° — ZAOB) = 180°

so Z,C, B" are collinear.

Claim. Triangles ZX A and ZD B’ are similar.
Proof. We have

/XAZ =/BAO =90° - LACB = /CBB' = /BB'C = /DB'Z.

So it suffices to prove that % = Q—f(. To do this, first observe

/B'ZA=/C070=/CBO=/XCB and /AB'Z=/AB'C=/CBA=/CBX.

Hence triangles ZAB' and C X B are similar so

B'Z  BC

AZ  CX’
Note that the orthocentre H of triangle ABC' is the reflection of D in AC. Applying sine rule
to triangles ACX and BHC gives

AX  sin/ZACX  sin(90° — ZCBA)  sin(90° - ZCBA) sin/HCB BH B'D

CX sin/ZXAC —  sin/ZBAC sin (180° — ZBAC) sin/BHC BC  BC’
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Multiplying the two results gives

B'Z AX BC B'D BD
AZ CX CX BE€ CX

which implies % = 2—)2(, as required. O
From the claim
/BDZ =180°— /ZDB' =180° - /ZXA = /BX7
which means Z lies on circle ©BX D. Similarly, Z lies on circle ©CY E completing the proof.

Solution 3 (Inversion at A).

Consider the composition of the inversion at A with radius v/ AB x AC' and reflection in the
angle bisector of Z BAC', and use P* to denote the image of a point P under this transformation.
Let H be the orthocentre of triangle ABC and let K, L be the feet of the perpendicular from
A, B to BC, C'A respectively. Denote A = /BAC, B=/CBA and C = ZACB.

We have
LD*AK = ZOAD =90° — ZDBA =90° — (90° — A) = A.

Hence, using right-angled AAK D*

D*K — AK tan A — 2Rsin Bsin C tan A DK
{ an Rsin B sin C'tan = tan Atan Btan C

—
HK = 2Rcos BcosC HK

We also have
/AX*B=/ACX = /ZACO =90° — B.
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Hence, using right-angled ABLX*

X*L = BLtan B = 2Rsin AsinC' tan B X*L
— = tan Atan Btan C.
HL = 2Rcos AcosC HL
Thus [I);g = XH—? and as ZHLX* = ZHKD* = 90° this means that triangle D*H K and

X*HL are similar and in particular
/CD*H=/KD*H =/LX*H=/CX*H
so D*HCX™ is cyclic.

Inverting back, this gives DH*BX cyclic so H* lies on circle ©BX D. Similarly, H* lies on
circle ©CY E.

Since AO and AH are isogonal in ZBAC, H* lies on line AO completing the proof.

Solution 4 (Inversion at O). Let F' be the point on w such that AF is a diameter of w,
and J be the intersection of DF with CO.

Consider the inversion with respect to w and use P’ to denote the image of a point P.

X' lies on line CO and we have
/BX'J =/BX'O=/0BX = /OBA = /BAO = /BAF = /BDF = /BDJ
so BX'DJ is cyclic.
Let K be the intersection of AF with BC. Then we have OB = OD and
/KBO=90°—-A=/DBA=/DFA=/DFO =/0DJ
/BOK =2/0BA=2/CBD =/C0OD = ZJOD
Hence triangle BOK and DOJ are congruent. In particular BK = DJ and
/KBD =/KBO + /Z0BD = /0DJ + /BDO = /BDJ.
Thus BDJK is an isosceles trapezoid and BX'DJK is cyclic.

Inverting back this gives that BX DK’ is cyclic. Similarly C'Y EK’ is cyclic. Since K lies
on AO, K’ also lies on AO completing the proof.
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Let ABC be an acute-angled triangle with circumcircle w. A circle I' is internally
tangent to w at A and also tangent to BC' at D. Let AB and AC intersect I' at P and @
respectively. Let M and N be points on line BC' such that B is the midpoint of DM and
C' is the midpoint of DN. Lines M P and N(@ meet at K and intersect I again at I and J
respectively. The ray K A meets the circumcircle of triangle IJK at X # K.

Prove that ZBXP = ZCXQ.
(United Kingdom)

Solution 1 (Similar Triangles).

Let M P and NQ intersect AD at K; and K respectively. By applying Menelaus’ theorem
to triangle ABD and line M PK;, we have

AK, AP BM AP
K.D PB MD 2PB

and similarly }g% = 2‘27%. A homothety at A takes I' - w and D to the midpoint of arc BC

not containing A, so PQ || BC and AD bisects ZBAC'". Thus

AK, AP  AQ  AK,
K\D 2PB 2QC K,D

which implies Ky = K>, and K lies on AD.

Then we obtain
LIXD =/LJXK =/JIK =/ZJIP =/JQP =/ZJND
where the last equality follows from PQ || BC. This shows JXND is cyclic and hence
LDXN =/DJN =/DJQ = LDAQ = LDAC
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which shows AC' || XN. As C' is the midpoint of DN, A is the midpoint of X D.

Now observe that ZADP = LZAQP = LACB and L/PAD = /ZDAC = 42—‘4 so triangle
APD and ADC' are similar. Therefore we have

CD AD XA
DP AP AP

and also have
/CDP =180°— ZPDB = 180° — L PAD = / X AP.

Combining the two results gives triangles PDC and PAX are similar, which shows P is the
centre of spiral similarity taking CD — X A. Hence also triangles PXC and PAD are similar
which shows ZPXC = ZPAD = £2. This gives

/BXP=/BXC—-/PXC=/BXC— %A

which is symmetric in B, C' giving the result.

Solution 2 (Inversion). As in the first solution we show that K lies on AD. From C being
the midpoint of DN and BC' || PQ we get

—1=(C,o0p0;N,D) £ (4, PQ n AD; K, D) £ (A, P; J, D).

Similarly we get (A,Q;I,D) = —1.

B* D c*

Now invert about D with radius DP = D@ denoting the inverse of a point Z by Z*. Since
OAPQ and line PQ swap we have A* = PQ n AD. Thus we have:

As inversion preserves cross ratio and D inverts to the point at infinity, it follows I*, J*, K*
are the midpoints of A*Q, A* P, A* A respectively. We know XITK.J cyclic so X is the second
intersection of circle (I*J*K*) with AD. Homothety of factor 2 at A* takes circle (I*J*K*)
to circle ©APQ =T hence in fact X* is the midpoint of A*D.
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Then we have

/PDB = /BAD = /DAC = /DC*A*

so DP || C*A*. Also A* lies on PQ so as PQ || BC we get A*P || DC*, which gives PA*C*D
is a parallelogram. Similarly QA*B*D is also a parallelogram. As X™* is the midpoint of A*D
this shows that X* lies on lines B*() and C*P.

By applying standard properties of angles under inversion, we have

/BXP—/CXQ=(/BXD— /PXD)— (/DXC — /DXQ)

which gives the result.

— (/DB*X* — /DPX*) — (/X*C*D — /X*QD)
— (/DB*X* + /X*PQ) — (LX*C*D + /PQX*)

(as ZDPQ = /PQD)
— (/DB*Q — /PQB*)— (LPC*D — /C*PQ)

o v v
~~ "

=0 =0

=0 (as PQ || BO)
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Let ABC be an acute, scalene triangle with orthocentre H. Let ¢, be the line through
the reflection of B with respect to C'H and the reflection of C' with respect to BH. Lines ¢,
and /. are defined similarly. Suppose lines /¢, ¢;, and /. determine a triangle T .

Prove that the orthocentre of 7, the circumcentre of 7 and H are collinear.
(Ukraine)

Solution 1.

We write AP1P2P3 i_/ AQlQQQg (resp. AP1P2P3 ~ AQ1Q2Q3> to indicate that two trian-
gles are directly (resp. oppositely) similar. We use directed angles throughout denoted with

A.

Denote by A,, A. the reflections of A in BH and C'H respectively. B., B, and C,, C}
are defined similarly. By definition, ¢, = B.Cy, £, = C,A., l. = AyB,. Let Ay = 0, n 4,
By =/V0.nt,, C; =Ll,nl, and let O, H; be the orthocentre and circumcentre of 7 = AA; B;C;
respectively.

Claim 1. NAA,A. ~ AABC.

Proof. Let P = BHNAC, QQ = CHn AB, then it is well known that AAPQ ~ ANABC'. By the
dilation with factor 2 centred at A, AAPQ is sent to AAA,A., so we have NAA,A. ~ NABC.
(]
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Claim 2. NAA,A. X AAB,C, and A; lies on the circumcircle of AAA, A, which is centred at
H.

Proof. Since B,, C, are reflections of B, C'in AH, we have AAB,C, ~ AABC. Combining this
with Claim 1, we have AAA,A. by ANAB,C,, where A is the centre of this similarity. Therefore,
KA AAy, = XA AA, meaning A; lies on ©AA,A.. By symmetry, HA, = HA = HA., so H is
centre of this circle. H

Claim 3. NABC, ~ NABC.
Proof. From Claim 2 we have
AC1 By = £ AA A, O A AAA, = —4CAB

and similarly £ A1 B;C; = —XABC, £ B,C1A; = —4BCA, which imply AA;BC; ~ AABC.
U]

Denote the ratio of similitude of AA; B;Cy and AABC by A (= Bé—gl), then

B HlAl B H1B1 . HIOI
~ HA  HB  HC '

Since HA = HA, and similarly HB = HBy, HC = HC, from Claim 2, we get
. H1A1 . H1B1 . HICI

HA, HDB, HC,

A

A

Therefore, the circle A;B;C] is the Apollonian circle of the segment H H; with ratio A so the
line H H, passes through O;.
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Solution 2. We use the same notation Ay, A, B., B,,Cy,Cy, and Ay, By,C1,04, Hy as in
Solution 1, and also show Claim 1, Claim 2 and Claim 3 in the same way.

Let O be the circumcentre of AABC and A, be the reflection of A; in AH. As ©AA A, is
centred at H, A, also lies on this circle.

By Claim 2, £ B,A,C, = X A,AA, = X B,AC,, so Ay lies on ©AB,C,. Reflecting this in
AH gives that Ay lies on ©ABC. We now have circles centred at O and H passing through

A and A, so these points are symmetric with respect to OH. Define By and C5 similarly then
AABC and AA;ByCy are symmetric with respect to OH and also ©ABC' = ©A3ByCs.

By

Claim 4. A;As, B1B, and C1C5 have an intersection on ©ABC which we denote by T
Proof. Let T = A1 Ay n B1Bsy. Since A1 A, || BC and B1Bs || AC, we have
A_AQTBQ = X_BOA = _iBQCQAQ = iAQCQBQ.

So T lies on ®A3;B>Cy = ©@ABC. Similarly the intersection of A; Ay and C1Cy lies on ©ABC,
so C1C5 also passes through T n

Claim 5. T also lies on ®A1B;C and T corresponds to T itself under the similarity AA; B;C; ~
ANABC.
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Proof. We know ANA;B1C; ~ AABC by Claim 3. We also have
ABTCI = 4ByTCy = £ByAsCy = —4BAC "7 A B A,

so T lies on ®A;B1C. The remaining part is concluded by the following angle chase:

XA BT = XA BBy 7P 4 AL ALA = X Ay Ay A — —X AAT — —X ABT. n

Claim 6. The circumradius of AA;B;C] is equal to HO.

Proof. Two circles centred at H intersect /. at A;, A, and By, B,, so A1 A, and By B, have the
same midpoint and thus A;B; = A,B,. Consider the spiral symmetry AAA,A. s NAB,C,.
This takes H, the circumcentre of AAA,A,., to the circumcentre of AAB,C,, denoted by O,,
which is symmetric to O in AH. Hence AAA,B, T AAH O, s0

AA, AH AH AH _ HO

= = — = .
B,A, HO, HO AA,  AyB,

Also since AA;01B; L AAH A, (both of them are ~ AAOB), we have

A0, AH HO  HO
AB;,  AA, AB, AB;

— AlOl = HO

as desired. 0]
Since
£ (TAy, TOy) @2 % £ (TO, TA) = 90° + £ (T'Ay, AAy) ©"=2 £ (T A, OH),

we have O1T || HO. Combined with O;T = HO, O;TOH is a parallelogram. Therefore, using
this and Claim 5, we have £ H1O\T = XTOH = £ HO,T, which imply that O, H; and H are
collinear as desired.
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- Let ABC' be an equilateral triangle. Points Ay, B, C] lie inside triangle ABC' such
that triangle A1B101 is scalene, BA1 = AIO, CBl = BlA, AC’l = OlB and

LBACH+ LCBA+ LAC,B = 480°.

Lines BC; and CB; intersect at A,; lines CA; and AC, intersect at By; and lines AB; and
BA; intersect at C5.

Prove that the circumcircles of triangles AA; Ay, BB By, C'C1C5 have two common points.
(U.S.A.)

Solution. Let d4,dp,0c be the circumcircles of AAA; Ay, ABB1 By, ACC{C5. The general
strategy of the solution is to find two different points having equal power with respect to
04,08, 0c.

Claim. Ay is the circumcentre of A3 BC' and cyclic variations.

Proof. Since A; lies on the perpendicular bisector of BC' and inside ABA,C), it suffices to prove
/BAC =2/BA5C. This follows from

/BA,C = ZAyBA + /BAC + £ ACA,
1
= 5 (180° = ZAC\ B) + (180° — ZOB1 A)) + 60°
1
= 240° — 5 (480° ~ ZBA,C)

= %LBAlC

B

The circumcentres above give
/B1ByCy = /B1BsA = /ByABy = /C1ACy = LAC,C, = £ B,C5Ch

and so B1C1BsCs is cyclic. Likewise C1A1CyAs and A1 By Ay By are cyclic. Note that hexagon
A1 ByC1 Ay B1 (Y is not cyclic since

LCQAlBQ + LBQC&AQ + LAQBlcz == 4800 7 3600.
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Thus we can apply radical axis theorem to the three circles to show that A;As, B1Bs, C1, Cs
concur at a point X and this point has equal power with respect to d4,dg, dc.

Let the circumcircle of AA; BC meet 04 at A3 # As. Define B3 and C3 similarly.
Claim. BC B3C}3 cyclic.
Proof. Using directed angles

A BC5C = £BC5Cy + £C2C5C
— A BAC, + £CyC,C
= 90° + £(C1C, ACy) + £CoCC (CC,LAB)
= 90° + £C1C,B,.

Similarly £C'BsB = 90° + X B1ByC. Hence, using B;C1ByC5 cyclic
AXBB;C =90° + £C1ByB; = 90° + £C,CyB, = £ BC5C

as required. O

Similarly C AC3A3 and ABA3 B3 are cyclic. AC3BA3C Bz is not cyclic because then AByC' Bs
cyclic would mean Bj lies on ©ABC which is impossible since Bj lies inside AABC'. Thus we
can apply radical axis theorem to the three circles to get AA3, BBs, C'C3 concur at a point Y
which has equal power with respect to 4,05, d¢.

We now make some technical observations before finishing.
e Let O be the centre of AABC. We have that
/BAC =480° — /CBA — ZACB > 480° — 180° — 180° = 120°.

so A; lies inside ABOC. We have similar results for By, C; and thus ABA;C, ACB; A,
AAC1 B have disjoint interiors. It follows that A;B,C;A;B;C5 is a convex hexagon thus
X lies on segment A; As and therefore is inside d4.
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e Since A; is the centre of Ay BC we have that A1 A; = A1 Az so, from cyclic quadrilateral
AAy A1 As we get that lines AA; and AAs = AY are reflections in line AA;. As X lies on
segment A;A,, the only way X =Y isif A; and A, both lie on the perpendicular bisector
of BC'. But this forces B; and (] to also be reflections in this line meaning A; B; = A,C}
contradicting the scalene condition.

Summarising, we have distinct points X, Y with equal power with respect to d4,dg, dc thus
these circles have a common radical axis. As X lies inside 04 (and similarly 0z, d¢), this radical
axis intersects the circles at two points and so d4, 05, ¢ have two points in common.

Comment. An alternative construction for Y comes by observing that

sin /BAAy  GAsin/ABA AyB sin/CiBA  sin/BiCB sin /C1BA
sin LA, AC %SingACAQ  AC sin/ZACB; sinZCBC; sin ZACB;

and hence

sin ZBAA, ' sin ZC BBy . sin ZACCy _1
sin LAy AC sin/ByBA sin/ZCyCB
so by Ceva’s theorem, AAy, BBy, C'Cy concur and thus we can construct the isogonal conjugate of this
point of concurrency which turns out to be Y.
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Number Theory

Determine all positive, composite integers n that satisfy the following property: if
the positive divisors of n are 1 = d; < dy < --- < dp = n, then d; divides d;,1 + d; o for every
1<i<k-2

(Colombia)

Answer: n = p" is a prime power for some r > 2.

Solution 1. It is easy to see that such an n = p” with r > 2 satisfies the condition as d; = p'~*

with 1 > ¢ >k =r + 1 and clearly
P P pitL,

Now, let us suppose that there is a positive integer n that satisfies the divisibility condition
of the problem and that has two different prime divisors p and q. Without lost of generality, we
assume p < ¢ and that they are the two smallest prime divisors of n. Then there is a positive
integer j such that

dl = ]-7 d2 :p7adj :pj_ladj-‘rl :pjvdj-‘rQ = {q,
and it follows that

n n n n
dyp—j-1 = Eydk—j =5 d—j41 = pj_1,~~,dk—1 = dy =n.
Thus n n n n
dk_'_1=—|dk_‘+dk_' 1= — + — =—(p+1) (1)
g Tt p

This gives p’/ | q(p + 1), which is a contradiction since ged(p,p + 1) = 1 and p # q.

Solution 2. Since d;dy.1_; = n, we have the equivalence:

n n n
Ai—i1 | dp—y + di—s —.
e N b RS
We multiply both sides by d;d;1d; 2> and cancel the n’s to get
didiy1 | didivo + dip1digo.
Hence,
di | diz1dips. (2)

Moreover, by the condition of the problem,
di | dig1(diz1 + diga) = d?H + dip1d;yo.

Combining this with (2) we get that d; | d7,, forall 1 <i <k — 2.

Let dy = p be the smallest prime divisor of n. By induction on ¢ we prove that p | d; for
all 2 < i < k— 1. The base case d; = p is obvious. Let us suppose that p | d; for some
2 < j <k —2. Then we have that

p|dj|d§+1 = p|djn

as p is prime, which completes the induction. This implies that n has to be a prime power, as
otherwise there would be another prime ¢ that divides n and we would get that p | ¢ which is
obviously false.

We finally check that the powers of p satisfy the condition in the statement of the problem
as in Solution 1.
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Solution 3. We start by proving the following claim:
Claim. d; | d;yq for every 1 <i <k —1.

Proof. We prove the Claim by induction on i; it is trivial for ¢ = 1 because d; = 1. Suppose
that 2 < i < k — 1 and the Claim is true for i — 1, i.e. d;_; | d;. By the induction hypothesis
and the problem COIlditiOIl, di,1 | dz and di,1 ’ dz + di+1, SO difl | di+1.

n n

Now consider the divisors dy_; = ——, dg_j41 = —, dp_j10 = By the problem
.. dit1 d; i—1
condition,
n._m

dkfz#l + dk7i+2 _ d, di—l _ di+1 i di+1

dk*i n dl di,1
dit1

dit1

is an integer. We conclude that is an integer, so d; | d;1. O

i
By the Claim, n cannot have two different prime divisors because the smallest one would
divide the other one. Hence, n must be a power of a prime, and powers of primes satisfy the

condition of the problem as we saw in Solution 1.

Solution 4. We present here a more technical way of finishing Solution 1 after obtaining (1).
We let v,(m) denote the p-adic valuation of m. Notice that v,(n/q) = v,(n) as ged(p,q) = 1
and that

n .
o (504 D) = ()~
as ged(p,p + 1) = 1. But (1) implies

() = /) < vy (5l +1)) = ) =

which is a contradiction. Thus n has only one prime divisor as desired.
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Determine all pairs (a, p) of positive integers with p prime such that p®+a* is a perfect
square.

(Bangladesh)
Answer: (a,p) = (1,3), (2,3), (6,3), (9,3) are all the possible solutions.
Solution. Let p® + a* = b? for some positive integer b. Then we have
p* =b>—a* = (b+a?)(b—d?).

Hence both b + a? and b — a? are powers of p.
Let b — a® = p® for some integer . Then b+ a®> = p*® and a — x > x. Therefore, we have

2a* = (b+a?) — (b—a®) = p*~ —p® = p"(p"~>* — 1). (1)

We shall consider two cases according to whether p = 2 or p # 2. We let v,(m) denote the
p-adic valuation of m.

Case 1 (p = 2): In this case,
&2 _ 2:(:—1(2(1—250 o 1) _ 221}2((1) (2(1—2:(3 . 1)’

where the first equality comes from (1) and the second one from ged(2,2472* — 1) = 1. So,
20=2¢ _ 1 is a square.

If v5(a) > 0, then 29727 is also a square. So, 1 =0, and a = 0 which is a contradiction.

If vo(a) = 0, then z = 1, and a® = 2972 — 1. If a > 4, the right hand side is congruent
to 3 modulo 4, thus cannot be a square. It is easy to see that a = 1,2,3 do not satisfy this
condition.

Therefore, we do not get any solutions in this case.

2a72x o

2 2

Case 2 (p # 2): In this case, we have 2v,(a) = z. Let m = v,(a). Then we have a* = p*™ - n
for some integer n > 1. So, 2n? = p*~2* — 1 = pr"mim _ 1,

We consider two subcases.

Subcase 2-1 (p > 5): By induction, one can easily prove that p™ > 5™ > 4m for all m. Then
we have
2n2 +1= ppm-n74m - ppm-nfpm > 55m-(n71) > 5n71.

But, by induction, one can easily prove that 5°~! > 2n% + 1 for all n > 3. Therefore, we
conclude that n = 1 or 2. If n = 1 or 2, then p = 3, which is a contradiction. So there
are no solutions in this subcase.

Subcase 2-2 (p = 3): Then we have 2n? + 1 = 33" If m > 2, one can easily prove by
induction that 3™ > 4m. Then we have

2n2 +1= 33m-n74m = 33m-n73m _ 33m-(n71) > 39(n71).

Again, by induction, one can easily prove that 3°™=Y > 2n? 4 1 for all n > 2. Therefore,
we conclude that n = 1. Then we have 2-124+1 = 3" =% hence 3 = 33" ~*". Consequently,
we have 3" —4m = 1. The only solution of this equation is m = 2 in which case we have
a=3"-n=3-1=09.

If m < 1, then there are two possible cases: m = 0 or m = 1.
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e If m = 1, then we have 2n? + 1 = 3*"~%. Again, by induction, one can easily prove
that 3%"=% > 2n? 4+ 1 for all n > 3. By checking n = 1,2, we only get n = 2 as a
solution. This gives a = 3™ -n =3'-2 =6.

o If m = 0, then we have 2n? + 1 = 3". By induction, one can easily prove that
3" > 2n% +1 for all n > 3. By checking n = 1,2, we find the solutions a = 3°-1 =1
anda =3"-2=2.

Therefore, (a,p) = (1,3), (2,3), (6,3), (9,3) are all the possible solutions.
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For positive integers n and k > 2 define Ej(n) as the greatest exponent r such that
k" divides n!. Prove that there are infinitely many n such that Fig(n) > Eg(n) and infinitely

many m such that Ejo(m) < Eg(m).
(Brazil)

Solution 1. We let v,(m) denote the p-adic valuation of m. By Legendre’s Formula we
know, for p prime, that v,(n!) = |n/p| + |n/p*| +---. We can see that Eg(n) = [#J Since
vs(n!) < wve(n!) and Fio(n) = min(vs(n!), va(n!)), we have Ejg(n) = vs(n!).

Let [ be a positive integer. Set n = 5%~1'. Then we have

-1 _ 1 n—1
El()(n) =’U5(TL!) = 52l_2+52l_3+"'+5+ ]_ = 4 = 4 .
Since n = 5%~! =2 (mod 3), we have |%| = %22 and it implying
(n') VLJ"‘{HJ‘*‘[”J"' <n—2+n+n+ n 2
v ) = — - - P - - - e = — — —,
’ 3 32 3 3 323 2 3
From this we obtain
vz(n!) vg(n!) n 1 n 1
E = < K——z-<-—-—-—-=F
o(n) {2| 9 173 1 1 Bl
In a similar way, we set now m = 3*~2. Then we have
34l—2 -1 -1
vg(m!) =343 4344 ... 1341 = 5 :m2

Note that m = 3472 = 1 (mod 4) and hence Ey(m) = [vg’(;ﬂ)J = || = 21 We also have

m = 3*"2 =4 (mod 5) implying |5 = mT_‘*. Therefore we obtain

m

Eyo(m) = vs(m!) = {EJ + {

mJ+ m—4 m m
4

? 5 52 = Eg(m)

m 1
4 4

— 34[—2

We can take infinitely many n = 5%~ and m completing the proof.

Solution 2. In the setting of Solution 1, we consider two subsequences:
First, we take n = 5% with b > 2. Because 5 is not a square modulo 3 and ¢(3%) = 2-3%"1,
we have n = —1 (mod 3°). Hence,

| n n n—2 n-—38 n—(3*—-1) n n 1
vg(n-)=[§J+{§J+-«-< bt m ot <y bty

and Eyg(n) = 224 > 2H=20 > By (n).

1
In the same way, for m = 32> = —1 (mod 5°) with b > 2,

5b—1

m m m—4 m—24+ m—(5"=1) m m 1

P = |2+ [ 2]+ em L
e I Bl ] - T * 5 T
and Eg(m) = mTil > El()(m) holds.

Comment. From Solution 2 we can see that for any positive real B, there exist infinitely many positive
integers m and n such that Ejg(n) — Eg9(n) > B and Ej9(m) — E9(m) < —B.
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Let ay, a9, ..., ay,,b1,bs, ..., b, be 2n positive integers such that the n + 1 products
a1G2a3 - - - Qn,

biazas - - - ap,
bibyas - - - ay,

b1b2bs - - - by,

form a strictly increasing arithmetic progression in that order. Determine the smallest positive
integer that could be the common difference of such an arithmetic progression.

(Canada)
Answer: The smallest common difference is n!.
Solution 1. The condition in the problem is equivalent to
D = (by — ay)agag - - - a, = by(by — ag)azay -+ ap, = -+ =bibg -+ bp_1(by — an),

where D is the common difference. Since the progression is strictly increasing, D > 0, hence
b; > a; for every 1 < i < n. Individually, these equalities simplify to

(b — a;)aipr = bi(bit1 — a;r1) for every 1 <i<n—1. (1)

If g; := ged(a;, b)) > 1 for some 1 < i < n, then we can replace a; with % and b; with z—l to
get a smaller common difference. Hence we may assume ged(a;, b;) = 1 for every 1 < i < n.

Then, we have ged(b;—a;, b;) = ged(a;, b;) = 1 and ged(a; 41, bi41—a;41) = ged(aiq1,bi41) = 1
for every 1 <i < n — 1. The equality (1) implies a;,1 = b; and b; — a; = b;11 — a;41. Thus,

a, bi=asy, by=as, ..., b,_1=a,, b,

is an arithmetic progression with positive common difference. Since a; > 1, we have a; > 7 for
every 1 < i < n, so
D = (by —aj)agag---a, =>1-2-3---n =nl
Equality is achieved when b; —a; = 1 for1 <i<nanda; =1,ie. a; =7and b; =17+ 1

for every 1 < 7 < n. Indeed, it is straightforward to check that these integers produce an
arithmetic progression with common difference n!.

Solution 2 (Variant of Solution 1). Similarly to Solution 1, we may assume ged(a;, b;) = 1
for every 1 <1 < n.

Denote by pi1, ps, ..., pny1 the sequence obtained as the product in the problem statement.
Then we have 1% = % > 1, so b; > a;. Since p1,po, ..., pny1 is an arithmetic progression, we

have p;i2 = 2pi1 — p; hence

a; sz — Q;
o i _ :
b; b; Dit1 Dit1 @iyl

_ 20— i _ Pir2 _ bin

But since the fractions on the left-hand side and the right-hand side are both irreducible, we

conclude that b; = a;,1, so 2 — aa_L = Z—ﬁ Then we have a; + a;12 = 2a;,1, which means that
1 1
ai,as,...,a, is an arithmetic progression with positive common difference.

We conclude as in Solution 1.
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Solution 3. (The following solution is purely algebraic: it does not involve considerations on
greatest common divisors.)
We retake Solution 1 from (1). Then we have

i+1 _ b; 14 Q; ‘
biv1i — a1 b —ay bi — a;
So, for 1 <i < n,
a; a .
: (i 1)

b — a; by —a;

Then
a; aq
a; = =
b; — a; by —ay
since b; —a; = 1 and b; — a; > 0. As a; is an integer, we have a; > 1.
We again conclude as in Solution 1.

+(i—1)>i-1.
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Let a; < ay < az < --- be positive integers such that ay,; divides 2(a; + ag + - - - + ay,)
for every k > 1. Suppose that for infinitely many primes p, there exists k£ such that p divides
ar. Prove that for every positive integer n, there exists k such that n divides ay.

(Netherlands)

Solution. For every k > 2 define the quotient by, = 2(ay; + --- + ax_1)/ax, which must be a
positive integer. We first prove the following properties of the sequence (by):

Claim 1. We have by, < bp + 1 for all k > 2.

Proof. By subtracting bra, = 2(a; + - -+ + ag_1) from by 1ax1 = 2(a; + - -+ + ag), we find that
brr1ak+1 = brag + 2ax, = (b + 2)ay. From ap < agy it follows that by + 2 > by . O
Claim 2. The sequence (b) is unbounded.

Proof. We start by rewriting by 1ax41 = (b + 2)ay, as

b, + 2

k+1

41 = Qf, - — apy1 | ap (b +2).

If the sequence (by,) were bounded, say by some positive integer B, then the prime factors of the
terms of the sequence (ay) could only be primes less than or equal to B + 2 or those dividing
ay or as, which contradicts the property in the statement of the problem. O

Consider now an arbitrary positive integer n. We assume n > by, otherwise we replace n by
an arbitrary multiple of n that is bigger than b,. By Claim 2, there exists k such that by, > n.
Consider the smallest such k. From Claim 1, it follows that we must have b, = n — 1 and
brr1 = n (we assumed n > by to ensure that k£ > 2). We now find that

b + 2 n+1
U1 = Q- = = aj - .
k+1 n

Because n and n + 1 are coprime, this immediately implies that a; is divisible by n.

Comment. For ¢ a positive integer, the sequence ap = ck satisfies the conditions of the problem.
Another example is
ap =1, ay=2, ap=3k—1)forkz=3.
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A sequence of integers ag, a, as, ... is called kawaii, if ag = 0,a; = 1, and, for any

positive integer n, we have
(aps1 — 3an + 2ap,_1)(any1 — 4a, + 3a,-1) = 0.

An integer is called kawair if it belongs to a kawaii sequence.
Suppose that two consecutive positive integers m and m+ 1 are both kawaii (not necessarily
belonging to the same kawaii sequence). Prove that 3 divides m, and that m/3 is kawaii.

(China)
Solution 1. We start by rewriting the condition in the problem as:
Uny1 = 3ap — 2051, OF Gpy1 = 4ay, — 3an1.

We have a,,41 = a, or a,_1 (mod 2) and a,1 = a,_1 or a, (mod 3) for all n > 1. Now, since
ag = 0 and a; = 1, we have that a,, = 0,1 mod 3 for all n > 0. Since m and m + 1 are kawaii
integers, then necessarlly m = 0 mod 3.
We also observe that as = 3 or ay = 4. Moreover,

(1) If ag = 3, then a, =1 (mod 2) for all n > 1 since a1 = ay =1 (mod 2).
(2) If ag = 4, then a, =1 (mod 3) for all n > 1 since a; = ay =1 (mod 3).

Since m = 0 (mod 3), any kawaii sequence containing m does not satisfy (2), so it must
satisfy (1). Hence, m is odd and m + 1 is even.

Take a kawaii sequence (a,) containing m + 1. Let ¢t > 2 be such that a; = m + 1. As (a,)
does not satisfy (1), it must satisfy (2). Then a, = 1 (mod 3) for all n = 1. We define the
sequence a, = (a,+1 — 1)/3. This is a kawaii sequence: aj = 0, aj = 1 and for all n > 1,

(al, 11 — 3ay, + 2a;,_4)(a), 1 — 4a, + 3a,_1) = (an+2 — 3an11 + 2ay)(an+2 — 4an11 + 3a,)/9 = 0.
Finally, we notice that the term a;_, = m/3 which implies that m/3 is kawaii.

Solution 2. We start by proving the following:

Claim 1. We have a,, = 0,1 mod 3 for all n > 0.

Proof. We have a,,1 = 3a, — 2a,_1 = 3(a, — @pn_1) + ap_1 O apy1 = 4a, — 3a,1 = 3(a, —

Ap—1) + Qp, SO Apy1 = Gy, OF a,—1 mod 3, and since ay = 0 and a; = 1 the result follows. O
Hence if m and m + 1 are kawaii, then necessarily m = 0 mod 3.

Claim 2. An integer > 2 is kawaii if and only if it can be written as 1 4+ by + --- + b, for
some n > 2 with b; = 273% satisfying r; + s;, = i — 1 for i = 2,...,n and b; | b;;; for all
i=2....n—1.
Proof. For a kawaii sequence (a,), we can write a,,1 = 3a, — 2a,_1 = a, + 2(a, — a,_1) or
apy1 = 4a, — 3a,_1 = a, + 3(a, — an_1), 8O a1 — ap = 2(a, — ap_1) or 3(a, — a,_1). Hence,
ap, =14by +---+ b, where by = 2 or 3 and b; 1 = 2b; or 3b;.

Conversely, given a number that can be written in that way, we consider any sequence given
by ap=0,a; =1and a; =1+ by +--- +b; for 2 < i <n and a; given by the kawaii condition
for i = n + 1. This defines a kawaii sequence contalmng the given number as a,,. O

Let us suppose that m and m + 1 are kawaii, then they belong to some kawaii sequences and
we can write them as in Claim 2 asm = 142+ --+2¢42¢.3. Aand m+1 = 142+ - -+27 +27.3. A’
where ¢ is odd and ¢ is even because of modulo 3 reasons. Since m + 1 = m (mod 2™»(4)),
we have min(¢, ') = 0, so ¢’ = 0.

Then m+1=1+0by+ ---+b; for some b;’s as in Claim 2 with by = 3 and b; | b;+1: so with
3|b foralli=2,...,5. Then%z L4+ b 4 -+ b, with b} = % as in Claim 2 and % is

a kawalil integer.
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Solution 3. (This solution is just a different combination of the ideas in Solutions 1 and 2)
We first prove that, in a kawaii sequence ag, ai, as, ..., every term a; with ¢t > 0 is congruent to
0 or 1 modulo 3.
Forn > 1, put b, = a,, — a,_1. We have
t t
a; = ag + Z(ak - CLk_l) = Z bk (*)
k=1 k=1

Note that

Upi1 — 30pn + 20,1 = bn+1 —2b, and Apy1 — 4a,, + 3,1 = bn+1 — 3b,,.

The conditions on the b;’s for defining a kawaii sequence are

bn
by =a; —ag =1, and bH €{2,3} for n=1.

bn+l

bn

1. If we have

= 2 for any n with 1 <n <t — 1, then () implies that
t
g =Y 2" =2 ~1=0,1 (mod 3).
k=1

2. If there exists some integer s with 2 < s <t — 1 such that

@_%_ _bs —9 bs+1
bl_b2_ _bsfl_ ’ bs

it implies that 3 | b, for any n > s + 1. Similarly to the argument in (1), we obtain

= > b, =0,1 (mod 3).
k=1

=3,

a

&+

b
3. If b_2 = by = 3, we have 3 | b, for any n > 2, and hence a; = 1 (mod 3).
1

Combining these, we have proved that a; = 0,1 (mod 3).

We next prove that no positive kawaii integer is divisible by both 2 and 3. If b, = 2 for
some kawaii sequence, then 2 | b, and a,, = 1 (mod 2) for all n > 2 in it. If by = 3 in some
kawaii sequence, then 3 | b, and a,, = 1 (mod 3) for all n = 2 in it.

Now, consider the original problem. Since m and m + 1 are both kawaii integer, it means

m=0,1(mod 3), and m+1=0,1 (mod 3),

and hence we easily obtain 3 | m. Since a kawaii integer m is divisible by 3, m must be odd,
and hence m + 1 is even. Take a kawaii sequence ag, ay, as, ... containing m + 1 as a;. The
fact that m + 1 is even implies that by = 3 and so 3 | b, for all n > 2 in this sequence. Set

by, b b, by,
by, = ;1 forn > 1. Thusb’lzgzl,andg—fl=b—+26{2,3}foralln>1. Define a = 0
n n+1

n
and a,, = Z by, for n > 1, then ag, a},d), ... is a kawaii sequence. Now,
k=1

1 1 t 1 m
Ay = bi:gzbk=§<—b1+2bk>=§(—1+at)=§.

m
This means that 3 is a kawaii integer.

Comment. There are infinitely many positive integers m such that m, m + 1, m/3 are kawaii. To see
this, let £ = 1 be a kawaii integer. Then 2k 4+ 1 and 3k + 1 are kawaii by Claim 2 in Solution 2, and
3(2k+1)+1 =06k +4 and 2(3k + 1) + 1 = 6k + 3 are also kawaii.
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Let a, b, ¢, d be positive integers satisfying

ab N cd  (a+b)(c+d)
a+b c+d a+b+tc+d’

Determine all possible values of a + b + ¢ + d.
(Netherlands)

Answer: The possible values are the positive integers that are not square-free.

Solution.
First, note that if we take a = ¢, b = kf, ¢ = klf, d = k*( for some positive integers k and ¢,
then we have

ab N cd _ k2 N k302 _ kl N k¢ gy

a+b c+d C(+kl kK+KH k+1 Ek+1
and

(a+b)(ct+d) _ (0 + kO)(kl + K20) _ k(k + 1)%2 -

a+b+c+d O+ K0+ K0+ k2 U(k+1)? ’
so that

ab cd _M_(a—kb)(c—l—d)

a+b+c+d_ a+b+c+d’

This means that a + b+ ¢+ d = (1 + 2k + k?) = {(k + 1)? can be attained. We conclude that
all non-square-free positive integers can be attained.
Now, we will show that if

ab N cd  (a+b)(c+d)
a+b c+d a+b+c+d

then a + b + ¢ + d is not square-free. We argue by contradiction. Suppose that a + b+ ¢+ d is
square-free, and note that after multiplying by (a + b)(c + d)(a + b + ¢ + d), we obtain

(ab(c+d) + cd(a +b))(a+b+c+d) = (a+b)*(c+d)> (1)

A prime factor of a + b+ ¢+ d must divide a + b or ¢ + d, and therefore divides both a + b and
¢+ d. Because a + b + ¢ + d is square-free, the fact that every prime factor of a + b + ¢ + d
divides a + b implies that a + b + ¢ + d itself divides a + b. Because a + b < a + b+ ¢ + d, this
is impossible. So a + b + ¢ + d cannot be square-free.

Comment 1. Another way to conclude after obtaining (1) is by observing that
(a+0)*(c+d)?=(a+b* (moda+b+c+d)

Hence a +b+c+d | (a+b)*. Butif a+ b+ c+d is square-free, this forces a +b+c+d | a+ b, which
is clearly a contradiction.

Comment 2. It seems difficult to characterise all quadruples (a,b, c,d) that satisfy the equality in
the problem. Many of them, including those used in the solution, are of the general form (a,b,c,d) =
(wy?, 2yz, vy2, v2?) for some positive integers x, y, and z, but there are more solutions than that, such
as (a,b,c,d) =(2,7,8,10) or (a,b,c,d) = (13,14, 16, 38).
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Let Z-o be the set of positive integers. Determine all functions f: Z-y — Z-¢ such
that

FTNa+1) = (a+ 1) f(b)

a+
holds for all a,b € Z~q, where f*(n) = f(f(--- f(n)---)) denotes the composition of f with
itself k& times.

(Taiwan)
Answer: The only function satisfying the condition is f(n) = n + 1 for all n € Z-,.

Let P(a,b) be the equality in the statement.

Solution 1. We divide the solution into 5 steps.

Step 1. (f is injective)

Claim 1. For any a > 2, the set {f™(a) | n € Z~¢} is infinite.

Proof. First, we have (@ (a + 1) Pen (a +1)f(1). Varying a, we see that f(Z-) is infinite.

Next, we have fo7(@=1)(q) FlaZLb) af(b). So, varying b, f*7@Y(a) takes infinitely many values.

O
Claim 2. For any a = 2 and n € Z~(, we have f"(a) # a.

Proof. Otherwise we would get a contradiction with Claim 1. O

Assume f(b) = f(c) for some b < ¢. Then we have

£ (g £ 1)

— [eDI@ (5@ (g 4 1))
P(ab) FE@O (0 +1) £ (D))
= fle=b)f(a) ((a + 1)f(c)),

which contradicts Claim 2. So, f is injective.

Step 2. (f(Zso) = Zz»)
Claim 3. 1 is not in the range of f.
Proof. If f(b) = 1, then f/(a + 1) = a + 1 by P(a,1), which contradicts Claim 2. O

We say that a is a descendant of b if f™(b) = a for some n € Z-.

Claim 4. For any a,b > 1, both of the following cannot happen at the same time:
e ¢ is a descendant of b;

e b is a descendant of a.

Proof. If both of the above hold, then a = f™(b) and b = f"(a) for some m,n € Z-y. Then
a = f™"(a), which contradicts Claim 2. O

Claim 5. For any a,b > 2, exactly one of the following holds:
e ¢ is a descendant of b;
e b is a descendant of a;

e a=0>0.
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Proof. For any c > 2, taking m = f/©@=D=1(g) and n = f/¢=D=1(p), we have

f(m) = f5@D(a) "= af(e) and f(n) = S0 0) = bp ().
Hence
S0 (0) "= af(n) = abf(e) = bf(m) "= i p),
The assertion then follows from the injectivity of f and Claim 2. OJ

Now, we show that any a > 2 is in the range of f. Let b = f(1). If a = b, then a is in the
range of f. If a # b, either a is a descendant of b, or b is a descendant of a by Claim 5. If b is a
descendant of a, then b = f"(a) for some n € Z~q, so 1 = f"1(a). Then, by Claim 3, we have
n =1, so 1 = a, which is absurd. So, a is a descendant of b. In particular, a is in the range of
f' Thu87 f(Z>0> = Z>2'

Step 3. (f(1) = 2)
Claim 6. Let a,n = 2, then na is a descendant of a.

Proof. We write n = f(m) by Step 2. We have na = f(m)a fm@=1(a), which shows
na is a descendant of a. ]

P(a—1,m)

By Claim 6, all even integers > 4 are descendants of 2. Hence 2 = f(2k+ 1) for some k = 0.
Next, we show f(2k + 1) = f(1), which implies f(1) = 2. It trivially holds if £ = 0. If
k =1, let n be the integer such that f"(2) = 2k + 2. For any b > n/f(1), we have

P(1,b)

FAO=m 2k 4 2) = PP (2) " 2 () and fPIHD (2 4 2) TEEY

(2k +2) f (D).

By Claim 6, (2k +2) f(b) is a descendant of 2f(b). By Claim 2, we have bf(2k +1) > bf(1) —
By taking b large enough, we conclude f(2k +1) = f(1).

Step 4. (f(2) = 3 and f(3) = 4) From f(1) = 2 and P(1,b), we have f?*(2) = 2f(b). So taking
b = 1, we obtain f%(2) = 2f(1) = 4; and taking b = f(2), we have f2/?(2) = 2f%(2) = 8.
Hence, f2/@-2(4) = f2/@(2) = 8 and /@ (4) "EY 8 give £(3) = 2f(2) —

Claim 7. For any m,n € Z~, if f(m) divides f(n), then m < n.

Proof. If f(m) = f(n), the assertion follows from the injectivity of f. If f(m) < f(n), b
P(a,m), P(a,n) and Claim 6, we have that f"/(*)(a + 1) is a descendant of f™/(@(q + 1) for
any a € Zo. So mf(a) <nf(a), and m < n. O

By Claim 7, every possible divisor of f(2) is in {1, f(1) = 2, f(2)}. Thus f(2) is an odd
prime or f(2) = 4. Since f?(2) = 4, we have f(2) # 4, and hence f(2) is an odd prime. We set
p=f(2).

Now, f(3) = 2f(2) —2 = 2(p — 1). Since p — 1 divides f(3), we have p — 1 € {1, f(1) =
2, f(2) = p} by Claim 7, so p—1 = 2. Thus, f(2) =p=3and f(3) =2(p—1) = 4.

Step 5. (f(n) =n+1)
Claim 8. For any b > 1, f(2f(b) — 1) = 2b + 2.
Proof. Since f?(2) = 4, we have f*72(4) = f%(2) = 2f(b), so

ff(2f(b)—1)+2b—2(4) _ ff(2f(b)—1)(2f(b)) PO~ 4£(b)

which gives us f(2f(b) —1) = 2b + 2. O
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Finally, we prove f(n) = n+1 by induction on n. Suppose f(n) = n+1forall 1 <n < 2b+1.
Replace b by b+ 1in f(2f(b) — 1) = 2b + 2 to get

f2b+3)=f2f(b+1)—1)=2(b+1)+2=2b+4.

By induction hypothesis, we have f°(b + 2) = 2b + 2. Hence

FUF2b+2)) = fr2(b +2) = FFeD B+ 2) PO 9 1 9) = F(2b + 3).
By injectivity, f(20+2) = 2b+ 3. Then f(n) = n+ 1 for all n € Z-, which is indeed a solution.

Solution 2. In the same way as Steps 1-2 of Solution 1, we have that f is injective and

f(Z>O) = Z>2-
We first note that Claim 2 in Solution 1 is also true for a = 1.

Claim 2°. For any a,n € Z-o, we have f"(a) # a.

Proof. If a > 2, the assertion was proved in Claim 2 in Solution 1. If a = 1, we have that 1 is
not in the range of f by Claim 3 in Solution 1. So, f"(1) # 1 for every n € Z-. O

For any a,b € Z-, we have

a)— a)— P(f(a)—1,b)
fU@=05 @) = fIUO=D(f(a)) =T fla) £ (D).
Since the right-hand side is symmetric in a, b, we have
fbf(f(a)—1)+1(a) = f(a)f(b) = faf(f(b)—1)+1(b).

Since f is injective, we have fP/(/(0=1(q) = fefG®-1(p) We set g(n) = f(f(n) —1). Then we
have f%9(9)(a) = f290)(b) for any a,b € Z~o. We set n,, = bg(a) — ag(h). Then, for sufficiently
large n, we have f"*"t(a) = f™(b). For any a,b, c € Z-q and sufficiently large n, we have

frimatnetnn (a) = f7(a)
By Claim 2’ above, we have ng, + np + neq = 0, S0
(a—1b)g(c) + (b—c)g(a) + (c —a)g(b) = 0.

Taking (a,b,c) = (n,n + 1,n + 2), we have g(n + 1) — g(n) = g(n + 2) — g(n + 1). So,
{g(n)},>1 is an arithmetic progression.

There exist C, D € Z such that g(n) = f(f(n) —1) = Cn + D for all n € Z~(. By Step 2 of
Solution 1, we have f(Z-o) = Zs2, so C = 1. Since 2 = min,ez_ {f(f(n) — 1)}, we have D = 1.

Thus, g(n) = f(f(n) —1) =n+ 1 for all n > 1. For any a,b € Z-(, we have f?(1(a) =
e+ (). By the injectivity of f, we have f°(a) = f%(b). For any n € Z-, taking (a,b) = (1,n),
we have f™(1) = f(n), so f"}(1) = n again by the injectivity of f. For any n > 1, we have
Fn) = F(F 1) = fr) = s 1

Solution 3. The following is another way of finishing Solution 2 after Claim 2’ and having
introduced g(n) = f(f(n) —1). For a,b € Z- satisfying b = f*(a), we have

PO (F(a)) = fAT@D(f(g)) PIQT ¢y pp) PELTD parGo-1 f(p))
= fOOE(f(a)).
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By Claim 2’ in Solution 2, we have bg(a) = ag(b)+k, so f¥(a)-g(a) = a-g(f*(a))+k. Therefore,
for any n > 0, we put a, = f"(1). We have

Qp41 - g(an) = Qp - g(an+l) + 1
Ap+2 - g(anﬂ) = Qp+1 - g<an+2) +1

Unt2 - 9(An) = ap - g(an42) + 2.

Then we have

A Gny1 o §(Qni2) + 20041 = Qi1 Gnyz - g(an)
= U4 (an ~g(anyr) + 1)
=y - Any " G(Ani1) + Anyo
= Qn (an+1 “g(an+2) + 1) + Qny2

= Up " Apy1 g(&n+2) + an + Ap+2-

From these, we have 2a,,1 = a, + a,42. Thus (a,) is an arithmetic progression, and we have
a, = f"(1) = Cn + D for some C, D € Z.

By Step 2 in Solution 1, any a € Z~q is a descendant of 1, and f(Z~¢) = Zs5. Hence D =1
and C'= 1, and so f"(1) = n+1. For any n > 1, we have f*1(1) = n, so f(n) = f(f" (1)) =
(1) =n+1.

Solution 4.
We provide yet another (more technical) solution assuming Step 1 and Step 2 of Solution 1.
By Claim 5 in Solution 1, every a > 2 is a descendant of 1. Let g and h be the functions on
Z5 such that f99(1) = a and h(a) = f(a —1). Then, g: Zsy — Z=; and h: Zsy — Z=y are
bijections. The equation P(a,b) can be rewritten as

g(ah(b)) = g(a) + (b — 1)h(a).
Consider the set S, = g(a - Z~y). Since h is a bijection onto Zss, we have
Se = g(a) + h(a) - Zsy.

Consider the intersection S, N Sy = Siem(ap)- If We put ¢ = lem(a, b), this gives

(9(a) + h(a) - Z=o) 0 (g(b) + h(b) - Z=0) = g(c) + h(e) - Zzo.
Then we have h(c) = lem(h(a),h(b)) since the left hand side must be of the form m +
lem(h(a), h(b)) - Zsq for some m.

If b is a multiple of a, then lem(a,b) = b, so h(b) = lem(h(a), h(b)), and hence h(b) is a
multiple of h(a). Conversely, if h(b) is a multiple of h(a), then h(b) = lem(h(a),h(b)). On
the other hand, we have h(c) = lem(h(a),h(b)). Since h is injective, we have ¢ = b, so b is a
multiple of a.

We apply the following claim for H = h.

Claim. Suppose H: Z=y — Z=5 is a bijection such that a divides b if and only if H(a) divides
H(b). Then:

1. H(p) is prime if and only if p is prime;
2. H([[% o) =112, H(p:)® i.e. H is completely multiplicative;

3. H preserves ged and lem.



Proof. We define H(1) = 1, and consider the bijection H: Z-y — Z~o. By the conditions on
H, for any n € Z-5, n and H(n) have the same number of divisors. Hence H (p) is prime if and
only if p is prime.

Since the only prime dividing H(p") is H(p), we have H(p") = H(p)® for some s > 1.
Counting the number of divisors, we have s = r, so H(p") = H(p)" for any prime p and r > 1.

For a,b € Z-y, recall that ged(a,b) is a unique positive integer satisfying the following
condition: for any ¢ € Z-g, ¢ divides ged(a,b) if and only if ¢ divides both a and b. By the
condition on H, for any ¢ € Z~o, H(c) divides H(gcd(a,b)) if and only if H(c) divides both
H(a) and H(b). Hence we have H(ged(a,b)) = ged(H (a), H(D)).

Similarly, we have H(lem(a, b)) = lem(H (a), H(b)). Hence we have

H <pr‘) = H(lcm(p?, o ,pff)) = lcm(H(p?), . ,H(p?)) = lcm(H(pl)el, o ,H(pT)eT)

= HH(pi)ei

=1

since H(p;) and H(p,) are different primes for ¢ # j. O
Take two primes p # ¢, and let x, y be positive integers such that

g(p) + (x = 1Dh(p) = g(q) + (y — 1)h(q).

This is possible as h(p) and h(q) are two distinct primes. For every k = 0, by P(p,x + kh(q))
and P(q,y + kh(p)), we have

{ﬂph@+kmwn=g@w+@+kmw—1wwx
g(q- h(y + kh(p))) = g(q) + (y + kh(p) — 1)h(q),

where the right hand sides are equal. By the injectivity of g, we have
p-h(x +kh(q)) = q- h(y + kh(p)).
So, h(y + kh(p)) is divisible by p for all £ > 0. By the above Claim, h preserves gcd, so

h(ged(y, h(p))) = ged(h(y), h(y + h(p)))

is divisible by p. Since h(p) is a prime, y must be divisible by h(p). Moreover, h(h(p)) is also
a prime, so we have h(h(p)) = p. The function h o h is completely multiplicative, so we have
h(h(n)) = n for every n > 2.

By P(a, h(b)) and P(b, h(a)), we have

SO
g(a) + h(a)(h(b) — 1) = g(ab) = g(b) + h(b) (h(a) — 1).
Hence g(a) — h(a) = g(b) — h(b) for any a,b > 2, so g — h is a constant function. By comparing
the images of ¢ and h, the difference is —1, i.e. g(a) — h(a) = 1 for any a > 2.
So, we have g(h(a)) = h(h(a)) — 1 = a — 1. By definition,

fla—1) = h(a) = fPP(1) = f*71(1).

By the injectivity of f, we have f72(1)

= a — 1 for every a > 2. From this, we can deduce
inductively that f(a) = a + 1 for every a > 1.
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